%DIHSUD FH|JOANNEUM

Source Code Versioning

A ‘} git beginners workshop

?fnu-lsﬁn FH|JOANNEUM

THISIS GIT: IT TRACKS COLLABORATIVE LIORK

. ON PROTECTS THROUGH A BEAUTIFUL
* Version Control Systems DISTRBUTED GRAPH THEORY TREE MODEL.
L f CO0L. HOU DO LE.USE IT7

* What s git NO IDEA. JUST MEMORIZE. THESE. SHELL

. COMMANDS AND TYPE THEM TO SYNC VR
e Git Workflow IF'YOU GET ERRORS, SAVE YOUR LIORK

e

* Workspace, Staging, commit \ '
* .gitignore

* Branching and merging
* Work with remote repositories EQ

https://xkcd.com/1597/

https://xkcd.com/1597/

S HDIHSiD FH | JOANNEUM
Using Version Control (Systems)

A Version Control System (VCS) records changes
to a file or set of files over time so that you can Branch and Merge

recall specific versions later.

* Retains, and provides access to, every version of
every file that has ever been stored in it.

* Provides metadata, like commit messages,
attached to single files or collections of files.

 Allows teams that may be distributed across
space and time to collaborate.

https://hackernoon.com/top-10-version-control-systems-4d314cf7adea

https://hackernoon.com/top-10-version-control-systems-4d314cf7adea

*HDIHSUD FH JOANNEUM
Practices of using Version Control (Systems)

* Keep absolute everything in the version control

* Check in regularly
* Use meaningful commit messages

* Track changes
In case of fire 0

https://devrant.com/search?term=git+commit+fire

https://devrant.com/search?term=git+commit+fire

:ﬁ/mHSUD FH | JOANNEUM
There are more than only Source Code Files

Each project contains different file types, so we need to think about
how to create a structure to work with a long time

* Java class e * class

e Java archive e * jar

* Configuration e * properties, *.xml, *.json
e Documentation o *txt, *.md

* Images * * png, *.jpg

Keep track of project changes in software development

* Records changes to (all) files, like add, remove, modify, ... any
content of (nearly) any file.

* Access to specific version over time, which you have tracked with
Source Code Versioning, e.g. git

* Revert to a previous state in case of bugs, problems, ... and stop
working with "comments" of deprecated sources code

 Compare changes, to find differences between version, it's
important for debugging, bugfixing, ... e.g. compare version 23 with
version 54 which lines are different and will lead to a failure

Initial project

* Tracks changes and who have done those changes, in case of
guestions you are able to identify current and last developers

*HDIHSiD FH | JOANNEUM
First touchpoints in Real Life

How have you done versioning ...

... at your assighments?
... at lab exercises?

... at a previous project?
... at work?

https://pixabay.com/vectors/user-top-view-office-keyboard-154199/

https://pixabay.com/vectors/user-top-view-office-keyboard-154199/

:ﬁ/mHsUD FH|JOANNEUM
Some people’s version control method until now

e Textual version” e ,Timestamp version®
* Descriptive v | project Awesome App v || Project Awesome App * Early approach
o < LN current version current version o "
QUICk final version version-2017-01-01 Improved
* Confusing old version version-2018-08-15 * Confusing
° older versicn version-2012-12-24 °

real final version version-2019-02-28

:ﬁ/mHsUD

Possible reasons ,directory-versioning® is not a good practice

Really difficult to compare old versions
Manual comparison is needed and is defective
Many other manual work needed

No easy way for commenting your changes

Getting more and more complex at longer , life-time“
* Think about developing a software over months or years
e 2-4"versions" per week
 Up to approximately 200 versions a year
e ...in asingle folder with manual comparison
"finally the newest version of last changes but not fully tested"

FH | JOANNEUM

Project Awesome App
current version
final version
old version
clder version

real final version

DIHSUD FH [JOANNEUM

Already started?

* First lines of code has been already developed

* First challenges of changes
* |t works now
* Itdoesn't work, but what I've changed
e Oh...I'm not sure, there's a backup
e Oh... there is no backup*

 After Configuration Management
* Itdoesn't work, | will take a look on what I've changed!

JOANNEUM

University of Applied Sciences

%Dll—lsﬁo FH

Overview about Local, Centralized and Distributed VCS

 There are basically three different Types of VCS

 Local
 which is only on your computer
* no access of any other person

* Centralized
 which is only on one single server
* any authorized person is able to read and write changes

 Distributed

 where each server and computer has a full copy
 any changes will be shared and stored at developers pc

Git is a distributed versioning control system!

DIHSUD g bt 2
Local Version Control System

You are developing on your local computer.

Local Computer
* Version Database is stored on your PC.

* Working Directory / Checkout is located
on your computer too. Version 3

 Every change you are transmitting to your VEFSLOH ,
local Version Database.

|

Version 1

Checkout Version Database

DIHSUD
Local Version Control System

* Advantages * Disadvantages
e Simple * No collaboration
* No access to internet possible
needed * Single point of failure
* Another early approach * Not state-of-the-art

to compare changes

FH | JOANNEUM

DIHSUD FH [JOANNEUM

Centralized Version Control System

You are working again on your local computer, and another
developer is working on his computer.

Central VCS Server

Computer A
* Each developer has only the m Version Database
current version in his working directory. e
 Changes will be transferred to a
centralized server repository. Version 2
Computer B

 Each developer has the possibility | -
to keep on track of latest changes m‘
of other developers.

DIHSUD
Centralized Version Control System

* Advantages * Disadvantages

e Central overview about * Single point of failure
current project state Connection needed to

e everyone knows to a use Version Control
certain degree what System
everyone else on the * Current development
project is doing has to be transmitted to

* Collaboration is possible create a new trackable

version

FH | JOANNEUM

Distributed Version Control System

Advantages of previous Version Control Systems are getting
combined to a distributed VCS.

 Each developer is able and has to
* create new versions through commiting changes to the VCS,

* synchronized changes to a or multiple servers, computer A ER——
* collaborate with other team members through a
well known Version Control System,

 and keep on track to all changes within his team.

DIHSUD
Distributed Version Control System

* Advantages * Disadvantages
e Full ,,Backups” with * Needs training and
every clone practice
* Defined workflows * Steep learning curve
* Independent usage * Many commands
* Better team * Complicated workflows
collaboration (for beginners)

* Indispensable for
professional software
development

FH | JOANNEUM

DIHSUD
Quick Comparison

Advantages

* (Centralized) Server is easy to
* recover after system crash, or
 change to another system

 Current state-of-the-art VCS

Disadvantages

e Single point of failure

Computer A

&

e (Qutdated

Computer B

&0

o o e e e] e

Central VCS Server

Version Database

Ver 3
Version 2
Version 1

FH‘

Server Computer

Version Database

Computer A

JOANNEUM

University of Applied Sciences

]

%DIHSUD FH | JOANNEUM

Build software better, together
O git

* Branching and Merging
* Small and fast

* Distributed

* Data assurance

* Staging area
* Free and open source

First steps with Git

We have started with local git operations and commands!

e git init

e git add <filename>

e git add .

e git commit -m "<your git commit message>"
e git status

e git log --graph

FH |JOANNEUM

DIHSUD
Major Difference to other VCS...

Other VCS are storing versions with Delta-Information. Only
the changes are stored and to get the current version all

versions has to be combined.

Checkins Over Time
=

File A —» Al

File B

File C —» Al — A2

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

%Dmsﬁn FH|JOANNEUM

... IS the way of storing each version

Git is storing each new version of a file, creates a new
version "number" of all files, and refers to existing and not

changed files.
Checkins Over Time

Version 3

-
L8]
. Y

o
=

[{
1
|
|
i I
——
i |
|
|

|

|

o — | g - ——
.= '
X 1
]
1
]
-
]
1
]
1
A

Cc2

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

-

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

:ﬁ/mHsUD

Concept of local operations

* Most operations with local files and resources

* No information from another computer / server is needed

e Offline working nearly every time is possible

* Also complete history is available, because of complete clone

git add
git commit
git status
git log
git diff

FH | JOANNEUM

Data assurance — everytime!

e Check-summed before it is stored

— Every commit has its own checksum
— impossible to change any file, date, commit message, or any other data
— Data manipulation is nearly impossible

e SHA-1 hash
Example: 24b9da6552252987aa493b52f8696cd6d3b00373

* Most centralized VCS not provide such integrity

S HDIHSiD FH | JOANNEUM
Recording Changes to the Repository

* New Files are untracked
 Tracked files are already versioned
 Changes to files leads to "modified"
 Modified files become "staged"

Untracked Unmodified

 Agroup of staged files become
unmodified state through a "Commit"

Add the file

Edit the file

Stage the file

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

DIHSUD FH|JOANNEUM
Three main States of files

* Modified
e Editing files
e Staged

e Finished editing, transfered to working directory

staging area and ready to git add
create a new version

staging area

e Committed it commit

* The repository has a new version

repository

Important note: it's also possible to stage multiple files and commit them all by one single commit!

https://git-scm.com/about/staging-area

https://git-scm.com/about/staging-area

sity of Applied Sciences

%IHSUD

Quick way to commit your changes

 Possible with one command
* Not recommended for the beginning

* Only commit working version!

working directory

* Why this could be lead to problems?

git commit -a

FH ‘JOANNEUM

University of Applied Sciences

DIHSUD
Commits

e Each commit has its own —
unique — “id” (=hash) HEAD —

e HEAD refers to the current
commit

36T3chB0ash72c7fadf27807hleéceld90chsfeff

Author: Harald Schwal <harald. schwab2a@fh-joanneum. at=
Date: Wed Mov 30 12:35:18 2022 +0100

fixed bug related to user input

e8f2eflcac9dbcdffecdac268atootzbh33erhfda

Author: Harald Schwab <harald schwab2@fhjoanneum. at
Date: Thu Moy 29 17:48:05 2022 +0100

added greet function to output greeting

e Components of a commit:
* WHO: Author (name + email)
* WHEN: Date + Time
* WHAT: commit message

0377cdc58ballcl63487h1c96650340627176e89

Author: Harald Schwal <harald. schwab2@fh-joanneum. at=
Date: Mon Mov 28 0821010 2022 +0100

added first user input possibility

41ac78e2585305ec217b0afs5h4d24b72900a0b45

Author: Harald Schwal <harald. schwab2@fh-joanneum. at=
Date: Mon Nov 28 08:12:17 2022 +0100

initial commit

DIHSUD gt Bt/ 2oLl
Components of a commit

When was the Commit Hash
commit done -~ (unique)
B -\.-\.""-\.1‘ ‘._.-""...
] L, 41laci7B8e2585305ec2l7h0artsh4d24b72900a0b45
o . 1 Author: Harald Schwab <harald. schwab2@fh-joanneum. at=
Comimit In H;Sﬂjry - Cate: Mon Mov 28 08:12:17 2022 +0100 k
initial commit

Who has done
Commit Message the commit

(hame and email)

DIHSUD

Basic Git Workflow for every developer

1. Modify/Create files

in working directory*

2. Stage (git add) files

to the staging area

3. Commit changes (git commit)

FH |JOANNEUM

University of Applied Sciences

Working Staging .git directory
Directory Area (Repository)

| Stage (add) changes

and store a snapshot permanently in repository

s

commit '

* When talking about working directory the local git repository is meant. The directory where the .git directory is located, typically your project root directory.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

DIHSUD
Working wit

h Git Local — ,,Big Picture”

FH ‘JOANNEUM

University of Applied Sciences

LOCAL = YOUR COMPUTER

Untracked

Tracked

Working
Directory

e.g. new files
(not added)

Untracked

Add thi:

the file

e.g. existing files
(added before)

Unmodified

Edit the file

changed files

Modified

Stage Fires

Staging
Area

Checkout the project

IIIIIHHHH%HHIIIII

Stage tte file

.git directory
(Repository)

Checkins = git commit

Checkins Over Time

@

File A
File B

File C

—_—
git add <filename>

—_—
git commit -m "<your message>"

D & D

Al

€1

Al A2 A2
B Bl B2
c2 c2 c3

each version = checksum

Git commands — Configuration and Initialisation

. configure git*
: check/set the name that should be used
for your commits. Has to be set once!

: check/set the email that should be used
for your commits. Has to be set once!

. use instead of to set specific configurations
individual for the current local repository

: What should be the name of
the default branch? (today typically main)

. initialise a new git repository in the current directory. Only
needed once per repo/project at the beginning. Will create the .git-
directory.

https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://www.git-scm.com/docs/git-init

Git commands — Staging

: show current state of working directory and staging area
: will print a shorter output

: add new/changed files to the staging area
or will add all files at once. Use to add a specific
file
: Show the difference between the working directory and the staging area

: remove files from staging

will remove all already staged files from the staging area. It will not affect any
changes since last commit in the files itself.

will remove the file from staging. It will not affect any changes since last
commit in the file itself.

will revert all changes until this commit.

https://www.git-scm.com/docs/git-status
https://www.git-scm.com/docs/git-add
https://www.git-scm.com/docs/git-diff
https://www.git-scm.com/docs/git-reset

:ﬁ/mHSUD FH [JOANNEUM
Git commands — Commits and Git-History

: commit all staged changes (will open the set editor)

allow you to directly provide the
message

will add all changed (not new!) files
automatically to this commit

: show the history of your (local) repository

: switch to a specific commit/reset all uncommitted
changes of a file

will REVERT all changes in the file since last commit!
Use it with care, this operation could not be undone!

will switch to the specific commit. You can switch
back to the “latest” commit with (as long your branch is
called main!)

https://www.git-scm.com/docs/git-commit
https://www.git-scm.com/docs/git-log
https://www.git-scm.com/docs/git-checkout

:ﬁ/mHsUD

Commit messages,.

https://chris.beams.io/posts/git-commit/

COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE CODE.
ARAAAAAA
ADKFJISLKDFISDKLFT
MY HANDS ARE TYPING WJORDS
HAAARAARAAANDS

AS A PROJTECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

FH | JOANNEUM

.. which you should not write!

https://chris.beams.io/posts/git-commit/

%IHSUD el fieatli 2l
Meaningful commit messages

Type of changes

Related scope Short description of the change

(feature, bugfix, ...)

(not longer than 50 characters)

feat(cloud-sec): add sync with redshift cluster

—
«

- add DTOs and endpoints for the sync
- add job that runs every 60 sec
PRJ-1234

{ Empty line]

More details of the change

(not longer than 72 characters each line)

https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/

https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/

DIHSUD gt Bt/ 2oLl
Not every file has to be tracked

* Files can be tracked to be ignored by list of files

— create .gitignore file
— .gitignore file will be include a list of files and directories, which will be NOT tracked anymore

* Files toignore, e.g.:

— Executables *.exe

— Generated files *.class

— Images *.iso, *.dmg
— Log files *.log

— 3rd party libs (use a package manager)

— Secrets (passwords, logins, api keys, ...) N
— Backup files (automatically) created by your editor/ide lgl
— Other examples https://gist.github.com/octocat/9257657

ore

NEVER share secrets in a git repository!

https://git-scm.com/docs/gitignore

https://gist.github.com/octocat/9257657
https://git-scm.com/docs/gitignore

S HDIHSiD FH | JOANNEUM
Branches in a nutshell

Git Branching
heart_glasses branch oy devbocotcamp

/ main

moger oranch

https://gerardnico.com/code/version/git/branch

https://gerardnico.com/code/version/git/branch

%IHSUD

Branches in git

Little Feature

Main

FH|JOANNEUM

Branching can be found in many modern
version control systems, however often time
and space consuming.

In git:

T

Big Feature

Branches are lightweight and heavily used
in daily developement activities

A branch is a reference to a commit
(nothing is copied)
 Branch s tip of a series of commits

Basically in Git a "main" branch exists
(formally known as "master"), where every
commit leads to a new Version like CO, C1,
C2, ..

:ﬁ/ansUD FH | JOANNEUM
A new branch ...

... illlustrates independent line of development.
We create it when

e Testing first ideas for improvement
 Work on feature(s) or any other issues

* Fixing bugs

Think of it like an independent brand-new:
 working directory

* staging area

* project history

:ﬁ/mHSUD FH | JOANNEUM
Branching commands

On the following slides we will get to know the most

important commands for working with branches, so we are
able to:

Choose in which branch we want to work at one
moment ->

Create new branches ->
Merge multiple branches together ->

S HDIHSiD FH | JOANNEUM
git branch <name>

Allows us to create a new
branch based on the
commit we are currently
working on:

 The repository history
has not changed

—

O O
O O
(e (el

* We just get a new
pointer

S HDIHSiD FH | JOANNEUM
git branch (or git branch --list)

Get a list of all branches. O

 We are still working on

the main branch (*
signals active branch) O

0

S HDIHSiD FH | JOANNEUN
git checkout <name>

Switch to the specified
branch

* Now we can start
working

—

@
@
)

git checkout —b <name> creates a new branch and swichtes to it

0
o
et

DIHSID FH | JOANNEUM

Coding — Adding - Commiting

Our usual git workflow —
two commits later

O

a» |National Cyber Log4j is used worldwide across software applications and online services, and the
4 ’“ ‘ *"Security Centre vulnerability requires very little expertise to exploit. This makes Log4shell
potentially the most severe computer vulnerability in years.

Log4) software bug is 'severe risk’ to
the entire internet

A flaw in a commonly used piece of software has left millions of web servers
vulnerable to exploitation by hackers

Tech HelpDesk Future of Transportation Innovations Internet Culture Space Tech Policy Video Gaming

TECHNOLOGY

The “most serious’ security breach ever is
unfolding right now. Here’s what you need
to know.

%IHSUD TMOANNEUM

We need a fix ASAP LOGYHJ ™™ o

We can switch back to our main O O
development branch

git checkout main O O
and start there a new branch for
the fix:

git branch bug-log4j

git checkout bug-log4j O O

DIHSUD gl [2ol
We fix the bug and commit it

S HDIHSiD FH | JOANNEUN
git branch -d <name>

Allows us to delete a branch (like bug-
log4j) we no longer need

* Only allows safes operations so we
can loose nothing

e We would not be able to delete the

power branch, because we would O
loose all the changes in it
 Danger zone: -D is force delete and

would also throw away all commits
associtated with branch

S HDIHSiD FH | JOANNEUN
Back to power branch and work continues

O
O
O
O

O
ST

S HDIHSiD FH | JOANNEUN
When finished

We can now merge back our
new functionality to main

e Before we have to checkout
main, then merge

S HDIHSiD FH | JOANNEUM
Three-way merge

Merge creates a new commit as
both branches came from
different paths

* Makes a three-way merge

(Afterwards we want to remove
our branch)

:ﬁ/nmsijn FH |JOANNEUM
Sometimes you nheed to solve conflicts

f you are developing software within a team, there will
nappen sometimes conflicts, which you have to solve *
pefore you can continue your work.

Approaches to solve conflicts:
* Two-way merge

 Three-way merge
* Gitis using three-way merge

S HDIHSiD FH | JOANNEUM
What is a two-way merge?

 Two developers
e Third Person is looking at those two files
* Are both files modified?

Print(“hello”);

Print(“bye™);

Is the third person able to answer the question?

*HDIHSiD FH | JOANNEUM
Three-way merging a (possible) solution

30 Print(“bye”)

- »y o,
rin e”);

DIHSUD

FH ‘JOANNEUM

University of Applied Sciences

Sometime manual merge (szenarios) happens

3e

I 51

7@

Yours
0

Print(“hello”);

for i =1 to 1@

30

51

70

C Mine
M

Print(“bye”);

Iforl-l‘bol.l

Print(result);

Yours

Base C Mine
M

Print(“hello”);

30 30 [_printCbye;

51 51

70 ﬁ 76 | Print(result);

_ﬂ Result

3e

Print(“hello”);

51 for i = 1 to 25

70

Print(result);

Automatic — just keep “yours” (no
changes on "mine”)

Manual - resolved manually because
there was a conflict!

Automatic — just keep “mine” (no
changes on “yours”) (| added the code)

:ﬁ/mHSUD FH | JOANNEUM
Conflict: manual resolve necessary

e Choose the correct soluton between ,,conflict
dividers” <<<<<<< HEAD

>>>>>>> new_feature

e Add and commit the changes to resolve the
conflict (and end the merge process)

*HDIHSiD FH | JOANNEUM
Conflict: manual resolve necessary

. 1 = Merging: main.py - git-testing - Visual Studio Code DO - o x
To resolve conflicts as L pT—— e LD
best as possible it is rerge branch @ manpy > . B
recommendedtouse @l T intonetio® g oo
better tools, modern 5 R S o I —
IDEs with git support for S b iR e
example offer a good 6 print("result")

overview for resolving
merge conflicts. Result mainzy | Confct Remaiing -

1 print("hello")

2

3 ffor i in range(10): T
4 print(i) ‘
5

6 print("result") |

X Pmant @ ®0A0 - NORMAL-- Ln6, Col 15 Spaces:4 LF {& Python 3.10.11 64-bit (microsoft store) &' [

Example of merging in visual studio code

:ﬁ/mHSUD FH | JOANNEUM
Work with remote operations

At the next few slides we will cover important parts of
developing software within a team

e Difference between local and
* Remote Repository

* Major commands

DIHSUD FH|JOANNEUM

Local vs. Remote with Distributed Version Control System

* Developer’s Computer A

— ,Local”

— Local Repository
— Working Directory

* Server Computer

— Remote Repository

— ,Remote”
— E.g. GitHub, GitlLab, ...

%IHSGD gl beit ool
Working with a remote repository

Remote

git push

git commit

I git add

:ﬁ/ansUD FH | JOANNEUM
Working with (preview)

e Version of local repository hosted on the internet
or local network (e.g. GitLab)

* Collaborate with other developers

 The remote repository is necessary to simplify team
collaboration.

* A developer share latest commits / versions with
(transfer data to server) and another developer will

receive latest commits / versions wih (transfer
data from server) push

e It's about pushing and pulling®

https://vijaysangamworld.files.wordpress.com/2010/07/push-vs-pull.jpg

https://vijaysangamworld.files.wordpress.com/2010/07/push-vs-pull.jpg

%Dll—lsﬁn gl [l o L
Major "first" / "init" commands working with remotes

e git
e git
e git
e git
e git
e git
OR

e git

init

add <filename>

commit -m "<commit message>"
remote add origin <url>

push -u origin main

push --set-upstream origin main

clone <url>

highlighted commands are the "same" procedure (first commands local -> remote, second part remote -> local)

https://stackoverflow.com/questions/292357/what-is-the-difference-between-git-pull-and-git-fetch

https://stackoverflow.com/questions/292357/what-is-the-difference-between-git-pull-and-git-fetch

%DIHSUD FH|JOANNEUM

Git “Remote” Server
®
GitHub

o Bitbucket

% - FH [JOANNEUM
pHsuvpo . HHIMA cafountiad Samries

REHEHE&THEEEEHDT IN “TEAM.
m NQ BUT HERE'S A “‘U" IN
"PEDPLE WHO APPARENTLY
DONT UNDERSTAND THE
RELATIONSHIP BETIJEEN

ORTHOGRAPHY AND IMEANING.

g

:ﬁ/mHsUD FH|IOANNEUM
Today

e Deadline for last exercise
* First experience/problems?

* Team work with git

S HDIHSiD FH JOANNEUM
First experience or ~ e
problems?

Whenyouitry ID nerge m(}p;
hranches_ - £

:ﬁ/mHsUD

git push

* After changes in local repo push is
normally used to share modifications of
current branch with team by uploading
changes to remote repository

e git push -u origin branch_name

 Push local branch to remote repo
Only once necessary

Origin / Main

O

FH|JOANNEUM

rigin / Main

O

:ﬁ/mHsUD g bt 2
git fetch

 Downloads all branches with their commits from the
central repository
 Changes are not merged

Merge afterwards manually
Or change to new branch from remote

%Dll—lsﬁn FH|JOANNEUM
git pull

* Fetch the remote version of the current branch and merge it into local repo

:ﬁ/mHsUD FH|JOANNEUM
git branch

 |If we have never used a remote branch we do not have a
local version of it
 Only after checkouts

e git branch —r
* Shows remote branches

e gitbranch —a
e Shows local and remote branches

bﬁ/ansij‘lD g bt 2
git problem: merge unrelated histories

* If multiple team members clone an empty re
. Project 1 Project 2
this error can occur when the second person

pulling (and therefore merging) | |

e “fatal: refusing to merge unrelated histories” O O
° FiX it With com:ﬂit 1 com‘mitl
 git pull origin master --allow-unrelated-histories v
commit 2 W

.

',

g @ * - -
. ..

:ﬁ/mHSUD FH | JOANNEUM
git connect local repo to remote

 Connect a locally initalized git repo with a remote repo (like Github)

1. Add remote git server
 gitremote add origin <URL>

e 2. Verify URL
* gitremote -v

e 3. Push changes
e git push origin main

DIHSUD gt Bl 2o0L
git Pull Request

* A way to collaborate between developers

* Developer notifies team members that
feature is complete and everybody is
informed

 Changes can be discussed @
 Additional commits can be made

o0

Follow-Up Commits

* Review code and merge it into main e (TD N

DIHSUD

git Centralized Workflow

One central repo for reading and writing files
 Often adapted from older less flexible alternatives

Changes are stored local and they are published by
pushing

Fetch before publishing necessary
* Perfectly linear history

FH|JOANNEUM

:ﬁ/mHSUD FH | JOANNEUM
git Feature Branch Workflow

* All development should be realised in dedicated branch
* main will never contain broken code

* Branch names should be descriptive
* issue-#1234 or new-menu

 Feature branches can be pushed to central repo
* Discuss changes via pull request

DIHSUD FH|JOANNEUM

git Gitflow Workflow

* Legacy flow with git branches
 Main branch stores official release history
* Develop branch as integration branch for features

Main ‘ Develop ‘
N2 N2 N2
O\O-C o -
O O O

DIHSUD FH | JOANNEUM

glt Forking Workflow

Fundamentally different — every developer has own
server-side repository

* Not only one central repo

 Often used in open-source software projects

e Each contributor has

 Private local repo
e Public server-side one

 Developer push to their own server-side repo
 Open pull request to ,official” repo from maintainer

* Project maintainer can acccept contributions without
giving write access to project

DIHSUD FH|JOANNEUM
References

e Glinther Popp
Konfigurationsmanagement
dpunkt.verlag, 2008

* Scott Chacon, Ben Straub
Pro Git
Apress, 2nd Edition, 2014

* Jon Loeliger, Matthew McCullough
Version Control with Git
O’REILLY, 2012

» Bernd Oggl, Michael Kofler
Git — Projektverwaltung fiir Entwickler und DevOps-Teams
Rheinwerk Verlag, 2020

DIHSUD FH|JOANNEUM
Links

e Atlassian e @Git
Become a git guru Git Source Code Management
https://atlassian.com/git/tutorials https://git-scm.com/

e Peter Cottle git Book

Learning Git Branching https://git-scm.com/book/en/v2

https://learngitbranching.js.org/

Git — Getting Started
https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

* Github
https://github.com/

e Q@GitLab
https://gitlab.com/

e BitBucket
https://bitbucket.com/

https://learngitbranching.js.org/
https://learngitbranching.js.org/
https://github.com/
https://gitlab.com/
https://bitbucket.com/
https://git-scm.com/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

	Default Section
	Slide 1: Source Code Versioning
	Slide 2: Agenda
	Slide 3: Using Version Control (Systems)
	Slide 4: Practices of using Version Control (Systems)
	Slide 5: There are more than only Source Code Files
	Slide 6: Keep track of project changes in software development
	Slide 7: First touchpoints in Real Life
	Slide 8: Some people‘s version control method until now
	Slide 9: Possible reasons „directory-versioning“ is not a good practice
	Slide 10: Already started?
	Slide 11: Overview about Local, Centralized and Distributed VCS
	Slide 12: Local Version Control System
	Slide 13: Local Version Control System
	Slide 14: Centralized Version Control System
	Slide 15: Centralized Version Control System
	Slide 16: Distributed Version Control System
	Slide 17: Distributed Version Control System
	Slide 18: Quick Comparison
	Slide 19: Build software better, together
	Slide 20: First steps with Git
	Slide 21: Major Difference to other VCS…
	Slide 22: … is the way of storing each version
	Slide 23: Concept of local operations
	Slide 24: Data assurance – everytime!
	Slide 25: Recording Changes to the Repository
	Slide 26: Three main States of files
	Slide 27: Quick way to commit your changes
	Slide 28: Commits
	Slide 29: Components of a commit
	Slide 30: Basic Git Workflow for every developer
	Slide 31: Working with Git Local – „Big Picture“
	Slide 32: Git commands – Configuration and Initialisation
	Slide 33: Git commands – Staging
	Slide 34: Git commands – Commits and Git-History
	Slide 35: Commit messages,… which you should not write!
	Slide 36: Meaningful commit messages
	Slide 37: Not every file has to be tracked
	Slide 38: Branches in a nutshell
	Slide 39: Branches in git
	Slide 40: A new branch …
	Slide 41: Branching commands
	Slide 42: git branch <name>
	Slide 43: git branch (or git branch --list)
	Slide 44: git checkout <name>
	Slide 45: Coding – Adding - Commiting
	Slide 46
	Slide 47: We need a fix ASAP
	Slide 48: We fix the bug and commit it
	Slide 49: git branch -d <name>
	Slide 50: Back to power branch and work continues
	Slide 51: When finished
	Slide 52: Three-way merge
	Slide 53: Sometimes you need to solve conflicts
	Slide 54: What is a two-way merge?
	Slide 55: Three-way merging a (possible) solution
	Slide 56: Sometime manual merge (szenarios) happens
	Slide 57: Conflict: manual resolve necessary
	Slide 58: Conflict: manual resolve necessary

	Remote
	Slide 59: Work with remote operations
	Slide 60: Local vs. Remote with Distributed Version Control System
	Slide 61: Working with a remote repository
	Slide 62: Working with other developers (preview)
	Slide 63: Major "first" / "init" commands working with remotes
	Slide 64: Git “Remote” Server
	Slide 65: Team work
	Slide 66: Today
	Slide 67: First experience or problems?
	Slide 68: git push
	Slide 69: git fetch
	Slide 70: git pull
	Slide 71: git branch
	Slide 72: git problem: merge unrelated histories
	Slide 73: git connect local repo to remote
	Slide 74: git Pull Request
	Slide 75: git Centralized Workflow
	Slide 76: git Feature Branch Workflow
	Slide 77: git Gitflow Workflow
	Slide 78: git Forking Workflow
	Slide 79: References
	Slide 80: Links

