
Source Code Versioning
A beginners workshop

• Version Control Systems

• What is git

• Git Workflow

• Workspace, Staging, commit

• .gitignore

• Branching and merging

• Work with remote repositories

Agenda

https://xkcd.com/1597/

https://xkcd.com/1597/

Using Version Control (Systems)

• Retains, and provides access to, every version of
every file that has ever been stored in it.

• Provides metadata, like commit messages,
attached to single files or collections of files.

• Allows teams that may be distributed across
space and time to collaborate.

A Version Control System (VCS) records changes
to a file or set of files over time so that you can

recall specific versions later.

https://hackernoon.com/top-10-version-control-systems-4d314cf7adea

https://hackernoon.com/top-10-version-control-systems-4d314cf7adea

Practices of using Version Control (Systems)
• Keep absolute everything in the version control

• Check in regularly

• Use meaningful commit messages

• Track changes

https://devrant.com/search?term=git+commit+fire

https://devrant.com/search?term=git+commit+fire

There are more than only Source Code Files

Java is used here exclusively as an example, this applies to all common software projects.

• Java source

• Java class

• Java archive

• Configuration

• Documentation

• Images

• …

• *.java

• *.class

• *.jar

• *.properties, *.xml, *.json

• *.txt, *.md

• *.png, *.jpg

• …

Each project contains different file types, so we need to think about
how to create a structure to work with a long time

Keep track of project changes in software development

• Records changes to (all) files, like add, remove, modify, … any
content of (nearly) any file.

• Access to specific version over time, which you have tracked with
Source Code Versioning, e.g. git

• Revert to a previous state in case of bugs, problems, … and stop
working with "comments" of deprecated sources code

• Compare changes, to find differences between version, it's
important for debugging, bugfixing, … e.g. compare version 23 with
version 54 which lines are different and will lead to a failure

• Tracks changes and who have done those changes, in case of
questions you are able to identify current and last developers

Initial project

1.change

2.change

3.change
…

First touchpoints in Real Life
How have you done versioning …

… at your assignments?

… at lab exercises?

… at a previous project?

… at work?

…

https://pixabay.com/vectors/user-top-view-office-keyboard-154199/

https://pixabay.com/vectors/user-top-view-office-keyboard-154199/

Some people‘s version control method until now

Both versions are not the best way for source code versioning (!)

• „Textual version“ • „Timestamp version“

• Descriptive

• "Quick"

• Confusing

• …

• Early approach

• "Improved"

• Confusing

• …

Possible reasons „directory-versioning“ is not a good practice

• Really difficult to compare old versions

• Manual comparison is needed and is defective

• Many other manual work needed

• No easy way for commenting your changes

• Getting more and more complex at longer „life-time“

• Think about developing a software over months or years

• 2-4 "versions" per week

• Up to approximately 200 versions a year

• … in a single folder with manual comparison

"finally the newest version of last changes but not fully tested"

Already started?
• First lines of code has been already developed

• First challenges of changes
• It works now

• It doesn't work, but what I've changed

• Oh… I'm not sure, there's a backup

• Oh… there is no backup*

• …

• After Configuration Management
• It doesn't work, I will take a look on what I've changed!

* Software Versioning is no replacement of traditional backup strategies. It's possible to go back to older versions.

Overview about Local, Centralized and Distributed VCS

• There are basically three different Types of VCS

• Local
• which is only on your computer

• no access of any other person

• Centralized
• which is only on one single server

• any authorized person is able to read and write changes

• Distributed
• where each server and computer has a full copy

• any changes will be shared and stored at developers pc

Git is a distributed versioning control system!

Local Version Control System
You are developing on your local computer.

• Version Database is stored on your PC.

• Working Directory / Checkout is located
on your computer too.

• Every change you are transmitting to your
local Version Database.

Local Version Control System

Keep in mind: also possible with Distributed Version Control System (!)

• Advantages
• Simple

• No access to internet
needed

• Another early approach
to compare changes

• Disadvantages
• No collaboration

possible

• Single point of failure

• Not state-of-the-art

Centralized Version Control System
You are working again on your local computer, and another
developer is working on his computer.

• Each developer has only the
current version in his working directory.

• Changes will be transferred to a
centralized server repository.

• Each developer has the possibility
to keep on track of latest changes
of other developers.

Centralized Version Control System

• Advantages
• Central overview about

current project state

• everyone knows to a
certain degree what
everyone else on the
project is doing

• Collaboration is possible

• Disadvantages
• Single point of failure

• Connection needed to
use Version Control
System

• Current development
has to be transmitted to
create a new trackable
version

Distributed Version Control System
Advantages of previous Version Control Systems are getting
combined to a distributed VCS.

• Each developer is able and has to
• create new versions through commiting changes to the VCS,

• synchronized changes to a or multiple servers,

• collaborate with other team members through a
well known Version Control System,

• and keep on track to all changes within his team.

Distributed Version Control System

• Advantages
• Full „Backups“ with

every clone

• Defined workflows

• Independent usage

• Better team
collaboration

• Disadvantages
• Needs training and

practice

• Steep learning curve

• Many commands

• Complicated workflows
(for beginners)

• Indispensable for
professional software
development

Quick Comparison
Advantages

• (Centralized) Server is easy to
• recover after system crash, or

• change to another system

• Current state-of-the-art VCS

Disadvantages

• Single point of failure

• Outdated

Build software better, together

• Branching and Merging

• Small and fast

• Distributed

• Data assurance

• Staging area

• Free and open source

First steps with Git
We have started with local git operations and commands!

• git init

• git add <filename>

• git add .

• git commit -m "<your git commit message>"

• git status

• git log --graph

Major Difference to other VCS…
Other VCS are storing versions with Delta-Information. Only
the changes are stored and to get the current version all
versions has to be combined.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

… is the way of storing each version
Git is storing each new version of a file, creates a new
version "number" of all files, and refers to existing and not
changed files.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Concept of local operations
• Most operations with local files and resources

• No information from another computer / server is needed

• Offline working nearly every time is possible

• Also complete history is available, because of complete clone

git add

git commit

git status

git log

git diff

Data assurance – everytime!
• Check-summed before it is stored

– Every commit has its own checksum

– impossible to change any file, date, commit message, or any other data

– Data manipulation is nearly impossible

• SHA-1 hash
• Example: 24b9da6552252987aa493b52f8696cd6d3b00373

• Most centralized VCS not provide such integrity

It's impossible to get anything out of Git other than the exact bits you put in!

Recording Changes to the Repository
• New Files are untracked

• Tracked files are already versioned

• Changes to files leads to "modified"

• Modified files become "staged"

• A group of staged files become
unmodified state through a "Commit"

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Three main States of files

• Modified

• Editing files

• Staged

• Finished editing, transfered to
staging area and ready to
create a new version

• Committed

• The repository has a new version

https://git-scm.com/about/staging-area

Important note: it's also possible to stage multiple files and commit them all by one single commit!

https://git-scm.com/about/staging-area

Quick way to commit your changes

• Possible with one command

• Not recommended for the beginning

• Only commit working version!

• Why this could be lead to problems?

Commits
• Each commit has its own –

unique – “id” (=hash)

• HEAD refers to the current
commit

• Components of a commit:
• WHO: Author (name + email)

• WHEN: Date + Time

• WHAT: commit message

Components of a commit

Basic Git Workflow for every developer

1. Modify/Create files

in working directory*

2. Stage (git add) files

to the staging area

3. Commit changes (git commit)

and store a snapshot permanently in repository

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

* When talking about working directory the local git repository is meant. The directory where the .git directory is located, typically your project root directory.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

Working with Git Local – „Big Picture“

Git commands – Configuration and Initialisation
• git config: configure git*

• git config --global user.name: check/set the name that should be used
for your commits. Has to be set once!

• git config --global user.email: check/set the email that should be used
for your commits. Has to be set once!
• git config --local: use --local instead of --global to set specific configurations

individual for the current local repository

• git config --global init.defaultbranch: What should be the name of
the default branch? (today typically main)

• git init: initialise a new git repository in the current directory. Only
needed once per repo/project at the beginning. Will create the .git-
directory. *Global configurations could be found in the file ~/.gitconfig

https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://www.git-scm.com/docs/git-init

Git commands – Staging
• git status: show current state of working directory and staging area

• git status -s: will print a shorter output

• git add: add new/changed files to the staging area
• git add . or git add * will add all files at once. Use git add <path/to/file> to add a specific

file

• git diff: Show the difference between the working directory and the staging area

• git reset: remove files from staging
• git reset HEAD will remove all already staged files from the staging area. It will not affect any

changes since last commit in the files itself.

• git reset <filename> will remove the file from staging. It will not affect any changes since last
commit in the file itself.

• git reset <commit-hash> will revert all changes until this commit.

https://www.git-scm.com/docs/git-status
https://www.git-scm.com/docs/git-add
https://www.git-scm.com/docs/git-diff
https://www.git-scm.com/docs/git-reset

Git commands – Commits and Git-History
• git commit: commit all staged changes (will open the set editor)

• git commit -m "<commit message>" allow you to directly provide the
message

• git commit -am "<message>": -a will add all changed (not new!) files
automatically to this commit

• git log: show the history of your (local) repository

• git checkout: switch to a specific commit/reset all uncommitted
changes of a file
• git checkout <filename> will REVERT all changes in the file since last commit!

Use it with care, this operation could not be undone!

• git checkout <commit-hash> will switch to the specific commit. You can switch
back to the “latest” commit with git checkout main (as long your branch is
called main!)

https://www.git-scm.com/docs/git-commit
https://www.git-scm.com/docs/git-log
https://www.git-scm.com/docs/git-checkout

Commit messages,… which you should not write!

https://chris.beams.io/posts/git-commit/

https://chris.beams.io/posts/git-commit/

Meaningful commit messages

https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/

feat(cloud-sec): add sync with redshift cluster

- add DTOs and endpoints for the sync
- add job that runs every 60 sec
PRJ-1234

Type of changes
(feature, bugfix, …)

Related scope Short description of the change
(not longer than 50 characters)

Project management reference
(e.g. Jira ticket number)

More details of the change
(not longer than 72 characters each line)

Empty line

https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/

Not every file has to be tracked
• Files can be tracked to be ignored by list of files

– create .gitignore file

– .gitignore file will be include a list of files and directories, which will be NOT tracked anymore

• Files to ignore, e.g.:
– Executables *.exe

– Generated files *.class

– Images *.iso, *.dmg

– Log files *.log

– 3rd party libs (use a package manager)

– Secrets (passwords, logins, api keys, …)

– Backup files (automatically) created by your editor/ide

– Other examples https://gist.github.com/octocat/9257657

https://git-scm.com/docs/gitignore

NEVER share secrets in a git repository!

https://gist.github.com/octocat/9257657
https://git-scm.com/docs/gitignore

Branches in a nutshell

https://gerardnico.com/code/version/git/branch

main main

https://gerardnico.com/code/version/git/branch

Branches in git Branching can be found in many modern
version control systems, however often time
and space consuming.

In git:

• Branches are lightweight and heavily used
in daily developement activities

• A branch is a reference to a commit
(nothing is copied)

• Branch is tip of a series of commits

• Basically in Git a "main" branch exists
(formally known as "master"), where every
commit leads to a new Version like C0, C1,
C2, …

A new branch …
… illlustrates independent line of development.

We create it when

• Testing first ideas for improvement

• Work on feature(s) or any other issues

• Fixing bugs

Think of it like an independent brand-new:

• working directory

• staging area

• project history

Branching commands
On the following slides we will get to know the most
important commands for working with branches, so we are
able to:

Choose in which branch we want to work at one
moment -> checkout

Create new branches -> branch

Merge multiple branches together -> merge

git branch <name>
Allows us to create a new
branch based on the
commit we are currently
working on:

• The repository history
has not changed

• We just get a new
pointer

git branch (or git branch --list)

Get a list of all branches.

• We are still working on
the main branch (*
signals active branch)

git checkout <name>
Switch to the specified
branch

• Now we can start
working

git checkout –b <name> creates a new branch and swichtes to it

Coding – Adding - Commiting
Our usual git workflow –
two commits later

We need a fix ASAP
We can switch back to our main
development branch

git checkout main

and start there a new branch for
the fix:

git branch bug-log4j

git checkout bug-log4j

We fix the bug and commit it

git branch -d <name>
Allows us to delete a branch (like bug-
log4j) we no longer need

• Only allows safes operations so we
can loose nothing

• We would not be able to delete the
power branch, because we would
loose all the changes in it
• Danger zone: -D is force delete and

would also throw away all commits
associtated with branch

Back to power branch and work continues

When finished
We can now merge back our
new functionality to main

• Before we have to checkout
main, then merge

Three-way merge
Merge creates a new commit as
both branches came from
different paths

• Makes a three-way merge

(Afterwards we want to remove
our branch)

Sometimes you need to solve conflicts
If you are developing software within a team, there will
happen sometimes conflicts, which you have to solve
before you can continue your work.

Approaches to solve conflicts:

• Two-way merge

• Three-way merge
• Git is using three-way merge

💥

What is a two-way merge?
• Two developers

• Third Person is looking at those two files

• Are both files modified?

Is the third person able to answer the question?

Three-way merging a (possible) solution

Sometime manual merge (szenarios) happens

Conflict: manual resolve necessary
• Choose the correct soluton between „conflict

dividers“

• Add and commit the changes to resolve the
conflict (and end the merge process)

<<<<<<< HEAD
[Content current branch]
=======
[Content merging branch]
>>>>>>> new_feature

Conflict: manual resolve necessary
To resolve conflicts as
best as possible it is
recommended to use
better tools, modern
IDEs with git support for
example offer a good
overview for resolving
merge conflicts.

Example of merging in visual studio code

Work with remote operations
At the next few slides we will cover important parts of
developing software within a team

• Difference between local and remote

• Remote Repository

• Push/Pull

• Major commands

Local vs. Remote with Distributed Version Control System

• Developer‘s Computer A
– „Local“

– Local Repository

– Working Directory

• Server Computer
– Remote Repository

– „Remote“

– E.g. GitHub, GitLab, …

Working with a remote repository

Main.java

Repository

Staging Area

git add

git commit

Remote
Repository

git push

Local

Remote

Working with other developers (preview)

• Version of local repository hosted on the internet
or local network (e.g. GitLab)

• Collaborate with other developers

• The remote repository is necessary to simplify team
collaboration.

• A developer share latest commits / versions with push
(transfer data to server) and another developer will
receive latest commits / versions wih pull (transfer
data from server)

• „It‘s about pushing and pulling“
https://vijaysangamworld.files.wordpress.com/2010/07/push-vs-pull.jpg

https://vijaysangamworld.files.wordpress.com/2010/07/push-vs-pull.jpg

Major "first" / "init" commands working with remotes

• git init

• git add <filename>

• git commit -m "<commit message>"

• git remote add origin <url>

• git push -u origin main

• git push --set-upstream origin main

OR

• git clone <url>

https://stackoverflow.com/questions/292357/what-is-the-difference-between-git-pull-and-git-fetch

highlighted commands are the "same" procedure (first commands local -> remote, second part remote -> local)

https://stackoverflow.com/questions/292357/what-is-the-difference-between-git-pull-and-git-fetch

Git “Remote” Server

Team work

Today

• Deadline for last exercise

• First experience/problems?

• Team work with git

First experience or
problems?

git push
• After changes in local repo push is

normally used to share modifications of
current branch with team by uploading
changes to remote repository

• git push -u origin branch_name
• Push local branch to remote repo

• Only once necessary

git fetch

• Downloads all branches with their commits from the
central repository
• Changes are not merged

• Merge afterwards manually

• Or change to new branch from remote

git pull
• Fetch the remote version of the current branch and merge it into local repo

git branch
• If we have never used a remote branch we do not have a

local version of it
• Only after checkouts

• git branch –r
• Shows remote branches

• git branch –a
• Shows local and remote branches

git problem: merge unrelated histories
• If multiple team members clone an empty repo

this error can occur when the second person is
pulling (and therefore merging)
• “fatal: refusing to merge unrelated histories”

• Fix it with
• git pull origin master --allow-unrelated-histories

git connect local repo to remote
• Connect a locally initalized git repo with a remote repo (like Github)

• 1. Add remote git server
• git remote add origin <URL>

• 2. Verify URL
• git remote -v

• 3. Push changes
• git push origin main

git Pull Request
• A way to collaborate between developers

• Developer notifies team members that
feature is complete and everybody is
informed

• Review code and merge it into main
• Changes can be discussed

• Additional commits can be made

git Centralized Workflow
• One central repo for reading and writing files

• Often adapted from older less flexible alternatives

• Changes are stored local and they are published by
pushing

• Fetch before publishing necessary
• Perfectly linear history

git Feature Branch Workflow

• All development should be realised in dedicated branch
• main will never contain broken code

• Branch names should be descriptive
• issue-#1234 or new-menu

• Feature branches can be pushed to central repo

• Discuss changes via pull request

git Gitflow Workflow
• Legacy flow with git branches

• Main branch stores official release history

• Develop branch as integration branch for features

git Forking Workflow
• Fundamentally different – every developer has own

server-side repository
• Not only one central repo

• Often used in open-source software projects

• Each contributor has
• Private local repo

• Public server-side one

• Developer push to their own server-side repo
• Open pull request to „official“ repo from maintainer

• Project maintainer can acccept contributions without
giving write access to project

References

• Günther Popp
Konfigurationsmanagement
dpunkt.verlag, 2008

• Scott Chacon, Ben Straub
Pro Git
Apress, 2nd Edition, 2014

• Jon Loeliger, Matthew McCullough
Version Control with Git
O’REILLY, 2012

• Bernd Öggl, Michael Kofler
Git – Projektverwaltung für Entwickler und DevOps-Teams
Rheinwerk Verlag, 2020

Links

• Atlassian
Become a git guru
https://atlassian.com/git/tutorials

• Peter Cottle
Learning Git Branching
https://learngitbranching.js.org/

• Github
https://github.com/

• GitLab
https://gitlab.com/

• BitBucket
https://bitbucket.com/

• Git
Git Source Code Management
https://git-scm.com/

git Book
https://git-scm.com/book/en/v2

Git – Getting Started
https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control

https://learngitbranching.js.org/
https://learngitbranching.js.org/
https://github.com/
https://gitlab.com/
https://bitbucket.com/
https://git-scm.com/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

	Default Section
	Slide 1: Source Code Versioning
	Slide 2: Agenda
	Slide 3: Using Version Control (Systems)
	Slide 4: Practices of using Version Control (Systems)
	Slide 5: There are more than only Source Code Files
	Slide 6: Keep track of project changes in software development
	Slide 7: First touchpoints in Real Life
	Slide 8: Some people‘s version control method until now
	Slide 9: Possible reasons „directory-versioning“ is not a good practice
	Slide 10: Already started?
	Slide 11: Overview about Local, Centralized and Distributed VCS
	Slide 12: Local Version Control System
	Slide 13: Local Version Control System
	Slide 14: Centralized Version Control System
	Slide 15: Centralized Version Control System
	Slide 16: Distributed Version Control System
	Slide 17: Distributed Version Control System
	Slide 18: Quick Comparison
	Slide 19: Build software better, together
	Slide 20: First steps with Git
	Slide 21: Major Difference to other VCS…
	Slide 22: … is the way of storing each version
	Slide 23: Concept of local operations
	Slide 24: Data assurance – everytime!
	Slide 25: Recording Changes to the Repository
	Slide 26: Three main States of files
	Slide 27: Quick way to commit your changes
	Slide 28: Commits
	Slide 29: Components of a commit
	Slide 30: Basic Git Workflow for every developer
	Slide 31: Working with Git Local – „Big Picture“
	Slide 32: Git commands – Configuration and Initialisation
	Slide 33: Git commands – Staging
	Slide 34: Git commands – Commits and Git-History
	Slide 35: Commit messages,… which you should not write!
	Slide 36: Meaningful commit messages
	Slide 37: Not every file has to be tracked
	Slide 38: Branches in a nutshell
	Slide 39: Branches in git
	Slide 40: A new branch …
	Slide 41: Branching commands
	Slide 42: git branch <name>
	Slide 43: git branch (or git branch --list)
	Slide 44: git checkout <name>
	Slide 45: Coding – Adding - Commiting
	Slide 46
	Slide 47: We need a fix ASAP
	Slide 48: We fix the bug and commit it
	Slide 49: git branch -d <name>
	Slide 50: Back to power branch and work continues
	Slide 51: When finished
	Slide 52: Three-way merge
	Slide 53: Sometimes you need to solve conflicts
	Slide 54: What is a two-way merge?
	Slide 55: Three-way merging a (possible) solution
	Slide 56: Sometime manual merge (szenarios) happens
	Slide 57: Conflict: manual resolve necessary
	Slide 58: Conflict: manual resolve necessary

	Remote
	Slide 59: Work with remote operations
	Slide 60: Local vs. Remote with Distributed Version Control System
	Slide 61: Working with a remote repository
	Slide 62: Working with other developers (preview)
	Slide 63: Major "first" / "init" commands working with remotes
	Slide 64: Git “Remote” Server
	Slide 65: Team work
	Slide 66: Today
	Slide 67: First experience or problems?
	Slide 68: git push
	Slide 69: git fetch
	Slide 70: git pull
	Slide 71: git branch
	Slide 72: git problem: merge unrelated histories
	Slide 73: git connect local repo to remote
	Slide 74: git Pull Request
	Slide 75: git Centralized Workflow
	Slide 76: git Feature Branch Workflow
	Slide 77: git Gitflow Workflow
	Slide 78: git Forking Workflow
	Slide 79: References
	Slide 80: Links

