
Secure Infrastructure Lab
Linux, Container & sichere Server-Setups für KMUs

📍 Lakeside Science & Technology Park
📅 22.–23.01.2026

Eine Kooperation von
Coding School Wörthersee (CSAW) & HoliSec

Herzlich Willkommen 👋
Worum geht es hier?

Praxis statt Theorie

Reale Server, reale Fehler, reale Lösungen

Fokus auf verstehen, nicht blind kopieren

Für wen ist dieser Workshop?
IT-affine Entscheider:innen

Admins & Tech-Verantwortliche in KMUs

Entwickler:innen mit Infrastruktur-Verantwortung

👉 Kein Vorwissen notwendig – Neugier reicht wir starten bei 0

Wie wir arbeiten
Kurze Inputs

Viel Hands-on

Fehler sind Teil des Lernprozesses

Fragen jederzeit erlaubt 👍

💡 Slides führen – erklärt wird im Terminal

Was ihr am Ende könnt

Linux-Server sicher betreiben

Container sinnvoll einsetzen

Applikationen sauber hosten

Risiken realistisch einschätzen

bessere Infrastruktur-Entscheidungen treffen

Nach diesen zwei Tagen könnt ihr:

Struktur des Workshops
Tag 1 – Fundament

Linux verstehen & absichern

SSH, User, Updates

Docker & Docker Compose

Container & Netzwerke verstehen

Tag 2 – Anwendungen & Betrieb

Applikationen inbetriebnehmen

Reverse Proxy & HTTPS

Monitoring & Backups

Best Practices für KMUs

Ausblick: Advanced Security

Ablauf & Organisation
Hands-on auf eigenen VMs

Arbeiten im eigenen Tempo

Trainer unterstützen aktiv

Pausen nach Bedarf

☕ Bitte meldet euch, wenn ihr hängt – nicht warten!

Tag 1 – Linux & Container-Fundament

Ein sicherer Linux-Server

Saubere Zugänge

Docker läuft

Verständnis statt copy & paste

Ziel von heute:

Tag 1 – Linux & Container-Fundament

Heute bauen wir das Fundament:
Linux sicher verstehen

Zugänge sauber aufsetzen

Docker ohne Magie begreifen

Secure Infrastructure Lab · Lakeside Park · CSAW × HoliSec

Zielbild: Was soll heute Abend stehen?

✅ einen harten, sauberen Linux-Host

✅ User- und Rechte-Konzept, kein root-login

✅ SSH-Keys, SSH Hardening

✅ Updates & Wartung aufgesetzt

✅ Docker installiert + Basics verstanden

✅ Docker Networking + Compose als Grundlage

Tag 2 baut darauf auf: Reverse Proxy, TLS, Cloudflare, Apps, Monitoring, Backup

Am Ende von Tag 1 habt ihr:

Arbeitsweise heute (wichtig)
Hands-on > Theorie (ca. 70/30)

Ich erkläre kurz — dann macht ihr’s selbst

Fehler sind normal: wir debuggen live

Wenn du hängen bleibst: Hand heben (nicht warten)

Regel: Slides führen — gearbeitet wird im Terminal

Setup: Wie arbeiten wir?

Tools:

Terminal (Pflicht)

VS Code Remote SSH (optional, aber sehr praktisch)

Ziel: Ihr könnt alles auch ohne VS Code im Terminal.

Ihr habt eine Netcup VM mit Public IP (ggf. 2er-Teams).

Unsere VMs bei Netcup
ID IP-Adresse Login-User Teilnehmer Passwort

1 xxx.xxx.xxx.101 root Teilnehmer 1 ********

2 xxx.xxx.xxx.102 root Teilnehmer 2 ********

3 xxx.xxx.xxx.103 root Teilnehmer 3 ********

4 xxx.xxx.xxx.104 root Teilnehmer 4 ********

5 xxx.xxx.xxx.105 root Teilnehmer 5 ********

6 xxx.xxx.xxx.106 root Teilnehmer 6 ********

7 xxx.xxx.xxx.107 root Teilnehmer 7 ********

8 xxx.xxx.xxx.108 root Teilnehmer 8 ********

Mental Model: Host, Netzwerk, Dienste

SSHLaptop Linux VM (Host) Docker Engine Container / Services

Heute & morgen

Linux VM + Docker Engine verstehen

Morgen:

Container sicher exponieren

Heute:

Agenda Tag 1
Orientierung & Linux Basics (Navigation, Files, Editor)

Users, Gruppen, Rechte (Permissions!)

SSH Keys & Hardening

Updates, UFW, Basis-Hardening

Docker ohne Magie (docker run)

Docker Networking & Docker Compose

Abschnitt 1
Linux Orientierung: „Wo bin ich hier?“
Ziel: Du kannst dich im System bewegen, Dateien lesen & anlegen
Ohne das wird jeder Hardening-Schritt später frustig.

Das Linux-Filesystem (nur das Nötigste)

Linux

/home

/etc

/var

/usr/tmp

Hands-on: Orientierung im Terminal

Mini-Ziel:

Ich weiß, wer ich bin

Ich weiß, wo ich bin

Ich sehe, was hier liegt

pwd

whoami

hostname

uname -a

ls -lah

Navigation: cd, ls, less (Profi-Minimum)

Dateien ansehen ohne zu zerstören:

Shortcut:

q = quit

/wort = suchen

cd /

ls -lah

cd /etc

ls -lah | head

less /etc/ssh/sshd_config

Hands-on: Workspace anlegen (Ordnerstruktur)

Falls tree fehlt:

Wir arbeiten geordnet, damit man’s später wiederfindet:

mkdir -p ~/workshop/{labs,notes,compose,scripts}

tree -a ~/workshop || true

sudo apt update && sudo apt install -y tree

Dateien erstellen: touch, cat, heredoc

Mehrzeilig (super für Configs):

cd ~/workshop/notes

touch commands.txt

echo "Tag 1 – Command Log" > commands.txt

cat <<'EOF' >> commands.txt

pwd

whoami

ls -lah

EOF

Editor: vim oder nano (du entscheidest)

- i \→ insert
- Esc \→ normal mode
- :wq \→ speichern & beenden

Oder nano:

Vim Quickstart (Minimum):

vim ~/workshop/notes/commands.txt

nano ~/workshop/notes/commands.txt

VS Code Remote SSH (optional, aber nice)

Wichtig:
Auch mit VS Code musst du die Commands verstehen.

Wenn VS Code nicht geht: kein Stress - Terminal reicht.

Wenn du willst: Remote SSH nutzen, um schneller Files zu bearbeiten.

Checkpoint ✅ Abschnitt 1

✔ du kannst navigieren (cd, ls, less)

✔ du hast ~/workshop/ Struktur

✔ du kannst Files erstellen und editieren

Wenn das passt, bist du richtig:

Abschnitt 2
Users, Gruppen & Berechtigungen (EXTREM wichtig)
Ziel: Du verstehst warum „Permission denied“ passiert
und wie du’s sauber löst (ohne alles 777 zu machen).

Mini-Theorie: Ownership & Permissions

Owner (User)

Group

Mode Bits: rwx für user/group/others

Beispiel:

Merksatz:
Owner/Group bestimmen wer, rwx bestimmen was.

Jede Datei hat:

-rw-r----- 1 dihuser admin 531 Jan 8 12:01 secrets.txt

Hands-on: Permissions lesen lernen

Zeig mir:

Owner?

Group?

Rechte?

cd ~/workshop

touch fileA

ls -l fileA

stat fileA

Cooles Bash-Snippet: Rechte hübsch anzeigen

Optional gleich in ~/.bashrc speichern:

perm() { stat -c "%A %U:%G %n" "$@"; }

perm ~/workshop/fileA

echo 'perm(){ stat -c "%A %U:%G %n" "$@"; }' >> ~/.bashrc

source ~/.bashrc

Hands-on: chmod / chown / chgrp (Basics)

Rechte ändern:

Owner ändern (nur mit sudo):

mkdir -p ~/workshop/labs/perm-demo

cd ~/workshop/labs/perm-demo

touch secret.txt

perm secret.txt

chmod 600 secret.txt

perm secret.txt

sudo chown dihuser:dihuser secret.txt

perm secret.txt

Warum "chmod 777" verboten ist

chmod 777

Use groups + least privilege

Problem: Permission denied Bad Fix?

Everyone can write → Risk

Clean, auditable

Wir arbeiten mit:

Gruppen

gezielten Rechten

nachvollziehbaren Changes

Checkpoint ✅ Abschnitt 2 (bis hier)
✔ du kannst ls -l interpretieren

✔ du kennst chmod/chown/chgrp

✔ du weißt, warum 777 Mist ist

Nächster Schritt

User dihuser + sudo

SSH Keys

SSH Hardening

Updates & Firewall

➡ weiter mit Abschnitt 3

Jetzt bauen wir das sauber in ein Server-Setup ein:

Abschnitt 3
User, sudo & SSH Hardening

Ziel:

Kein Root-Login mehr, saubere User, nur SSH-Keys, nachvollziehbare Zugänge.

Warum wir Root loswerden müssen
Root hat keine Sicherheitsleine

Jeder Fehler = Full Compromise

Logs sind schlechter nachvollziehbar

Best Practice:

Root nur für Notfälle – nie für Daily Work

Zielbild: Zugriffskonzept

SSH Key sudoLaptop dihuser User root Rechte

SSH Login nur als normaler User

Root-Zugriff nur via sudo

Alles ist logbar

Hands-on: Root Passwort setzen (falls nicht erfolgt)

💡 Auch wenn Root später nicht loginfähig ist:

Starkes Passwort

Sicher im Passwortmanager

passwd

Benutzer anlegen: dihuser

Fragen:

Passwort setzen (temporär ok)

User-Infos optional

adduser dihuser

dihuser User zu sudo hinzufügen

Test (noch als root):

usermod -aG sudo dihuser

groups dihuser

Wechsel zu dihuser

💡 Ab jetzt: wir arbeiten nicht mehr als root

su - dihuser

whoami

sudo verstehen (wichtig!)

Was passiert hier?

sudo fragt dein Passwort

Aktion wird geloggt

Zeitlich begrenzter Cache

Logs:

sudo ls /root

sudo whoami

sudo journalctl -u sudo

Warum sudo besser ist als su

no audit logged

su - root

Unsichtbare Aktionen

sudo

Nachvollziehbar

In Firmenumgebungen:

sudo = Pflicht

su = verboten

SSH: Authentifizierung
verstehen

❌ Passwort

✅ SSH Key (asymmetrisch)

ServerLaptop

ServerLaptop

SSH Public Key

Challenge

Signed Response

Login OK

Zwei Wege:

Hands-on: SSH Key lokal erzeugen

Empfehlungen:

ed25519

Key-Passphrase setzen

👉 Auf deinem Laptop, nicht auf dem Server!

ssh-keygen -t ed25519 -C "secure-infra-lab"

Public Key auf Server kopieren

Test:

➡ Login ohne Passwort

ssh-copy-id dihuser@<SERVER-IP>

ssh dihuser@<SERVER-IP>

SSH Konfiguration verstehen

Wir ändern gezielt, nicht blind.

Config-Datei:

sudo vim /etc/ssh/sshd_config

SSH Hardening – Pflicht-Settings

💡 UsePAM bleibt an → Login Accounting

PermitRootLogin no

PasswordAuthentication no

PubkeyAuthentication yes

ChallengeResponseAuthentication no

UsePAM yes

Sichere Änderung mit Backup & Test

Config testen:

⚠️ Nur wenn kein Output kommt, ist alles OK

sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak

sudo vim /etc/ssh/sshd_config

sudo sshd -t

SSH neu starten (vorsichtig!)

WICHTIG:

Aktive SSH-Session offen lassen

Zweite Session zum Testen öffnen

sudo systemctl restart ssh

Typische Fehler & Debugging

Checkliste:

Tippfehler?

sshd -t vorher ok?

Richtiger User?

Public Key richtig?

❌ Login geht nicht mehr?

sudo journalctl -u ssh -n 50

authorized_keys richtig prüfen

Rechte müssen sein:

ls -lah ~/.ssh

ls -lah ~/.ssh/authorized_keys

chmod 700 ~/.ssh

chmod 600 ~/.ssh/authorized_keys

Mini-Exkurs: Warum Permissions hier kritisch sind

falsche Rechte → Login verweigert

Security > Convenience

Loose Permissions SSH refuses login Security > Comfort

SSH ist streng:

Checkpoint ✅ Abschnitt 3
✔ Login nur als dihuser

✔ SSH Key funktioniert

✔ Root Login deaktiviert

✔ Passwort-Login aus

✔ sudo verstanden & nutzbar

Ausblick nächster Abschnitt

➡ Systempflege & Schutz:

Updates

unattended-upgrades

UFW Firewall

Minimal Exposure

👉 weiter mit Abschnitt 4

Jetzt, wo der Zugang sicher ist:

Abschnitt 4
Systempflege, Updates & Firewall

Ziel:

Ein Server, der aktuell, wartbar und minimal exponiert ist.

Warum Updates Security sind
80 % der erfolgreichen Angriffe nutzen:

bekannte Schwachstellen

ungepatchte Systeme

Zero-Days sind selten

Updates schlagen fancy Security-Tools

Merksatz:

Patchen ist die billigste Security-Maßnahme.

Mental Model: Angriffsfläche reduzieren

alles offen

nur SSH

Internet

Server ❌

Server ✅

Je weniger erreichbar:

desto weniger Risiko

desto weniger Stress

Hands-on: Paketverwaltung verstehen

Upgrade durchführen:

Optional (Kernel / libc):

sudo apt update

sudo apt list --upgradable

sudo apt upgrade

sudo apt full-upgrade

Autoremove & Cleanup (Hygiene)

💡 Hält das System schlank & übersichtlich

sudo apt autoremove

sudo apt autoclean

unattended-upgrades: Automatische Security-Patches

Interaktive Basiskonfiguration:

➡ „Yes“ für automatische Updates

Installation:

sudo apt install -y unattended-upgrades

sudo dpkg-reconfigure unattended-upgrades

unattended-upgrades – was passiert wirklich?

Wichtig:

Security Updates automatisch

Reboots nicht blind tagsüber

Konfig-Datei:

/etc/apt/apt.conf.d/50unattended-upgrades

Automatische Reboots kontrollieren

Empfohlene Settings:

💡 Reboots später bewusst durchführen

sudo vim /etc/apt/apt.conf.d/50unattended-upgrades

Unattended-Upgrade::Automatic-Reboot "false";

Status & Logs prüfen
systemctl status unattended-upgrades

less /var/log/unattended-upgrades/unattended-upgrades.log

Checkpoint ✅ Updates
✔ Updates durchgeführt

✔ unattended-upgrades aktiv

✔ System ist patchfähig

Firewall am Linux Host
Warum Firewall trotz Cloud wichtig ist

Cloud ≠ Firewall

Security Groups ≠ Host Firewall

Defense in Depth

Internet Cloud FW Host Firewall Service

UFW – unkompliziert & effektiv

Default-Policy setzen:

Status prüfen:

sudo ufw status verbose

sudo ufw default deny incoming

sudo ufw default allow outgoing

SSH absichern (Pflichtregel)

Oder explizit:

sudo ufw allow OpenSSH

sudo ufw allow 22/tcp

Firewall aktivieren (bewusst!)

Warnung lesen → bestätigen

sudo ufw enable

UFW Regeln anzeigen

Regel löschen:

sudo ufw status numbered

sudo ufw delete <NUMMER>

Typische Firewall-Fallen

Merksatz:

Was nicht gebraucht wird, bleibt zu.

❌ SSH vergessen erlaubt
❌ „allow all“ aus Bequemlichkeit
❌ Ports offen „für später“

Mini-Demo: Blockierte Verbindung

HTTP-Port nicht erreichbar

SSH erreichbar

💡 So soll es sein.

kann getestet werden mittels netcat oder telnet

alternativ auch über https://shodan.io

Test (von extern):

https://shodan.io/

UFW + Docker (wichtig!)

Docker umgeht UFW teilweise

Lösung (nur erwähnen):

Docker-Userland-Proxy

später: Reverse Proxy + nur 80/443

👉 Wir fixen das konzeptionell morgen

Problem:

Checkpoint ✅ Firewall
✔ Default deny incoming

✔ SSH erlaubt

✔ keine unnötigen Ports offen

✔ Verständnis für Defense in Depth

Tagesstand jetzt

Linux Host

Updates & Wartung User & SSH Hardening Firewall

Fundament steht.
Jetzt dürfen wir Container darauf loslassen.

Ausblick nächster Abschnitt

Images vs Container

docker run

Ports bewusst öffnen (noch!)

Container sehen & stoppen

👉 weiter mit Abschnitt 5: Docker Basics

➡ Docker verstehen, ohne Magie

Abschnitt 5
Docker Basics – Container ohne Magie

Ziel:

Du verstehst was Docker wirklich tut,

kannst Container starten, stoppen, beobachten

und erkennst warum Port-Exposure gefährlich ist.

Warum wir Docker einsetzen
reproduzierbare Umgebungen

gleiche Software überall

schneller Start / schneller Stop

saubere Trennung von Diensten

Docker ist kein Ersatz für Security,
sondern ein Werkzeug zur Ordnung.

Mental Model: Was ist ein Container?

ProcessLinux Host Docker Engine Container App

Container = Prozess
läuft auf dem Host-Kernel
kein eigenes Betriebssystem

Das nennt man Kernal-Namespaces!

Image vs Container

docker run stop rmImage Container stopped container deleted

Image = Bauplan
Container = laufende Instanz
Image bleibt unverändert

Docker installieren (falls noch nicht passiert)

👉 Danach neu einloggen

Test:

curl -fsSL https://get.docker.com | sh

sudo usermod -aG docker dihuser

docker version

docker info

Dein erster Container (sichtbar & bewusst)

Was passiert hier?

-d → detached

-p 8080:80 → Port Mapping

nginx → Image

docker run -d -p 8080:80 nginx

Container live beobachten

Browser:

Funktioniert das bei euch?

Wie schaut es bei unsere ufw firewall aus? 🔐

💡 mit allow 8080 funktioniert es jetzt.

Was jedoch noch fehlt ist verschlüsselte Kommunikation zum Webserver.

docker ps

http://SERVER-IP:8080

Container Logs & Prozesse

Vergleich:

Container = Prozess mit Grenzen.

docker logs <container-id>

docker top <container-id>

ps aux | grep nginx

Container stoppen & löschen

Image bleibt:

docker stop <container-id>

docker rm <container-id>

docker images

Warum offene Ports ein Problem sind

Port 8080Internet Nginx Container ❌

Probleme:

kein TLS

kein Auth

kein Rate Limit

kein Überblick

Merksatz:

Jeder offene Port ist ein Versprechen an Angreifer.

Port Mapping bewusst variieren

Test:

von Server: funktioniert

von außen: ❌ blockiert

docker run -d -p 127.0.0.1:8081:80 nginx

Wichtiger Aha-Moment

80 8080 8080Container Docker Bridge Host Internet

Port Exposure = Host-Entscheidung,
nicht Container-Entscheidung.

Container ohne Ports starten

➡ Läuft, aber nicht erreichbar

docker run -d --name internal-nginx nginx

docker ps

Container inspizieren (Gold!)

Achte auf:

NetworkSettings

Mounts

State

docker inspect internal-nginx | less

Typische Anfängerfehler

👉 Alles fixen wir strukturiert.

❌ alles mit Ports starten
❌ Container als VM behandeln
❌ Configs im Container ändern ❌ Logs ignorieren

Checkpoint ✅ Abschnitt 5
✔ Image vs Container verstanden

✔ Container starten & stoppen

✔ Logs lesen

✔ Port-Exposure bewusst eingesetzt

✔ Container ≠ VM

Vorbereitung auf den nächsten Schritt

viele docker run Befehle

nichts versioniert

kein Überblick

➡ Lösung:
Docker Compose

👉 weiter mit Abschnitt 6: Docker Networking & Compose

Was jetzt noch weh tut:

Abschnitt 6
Docker Networking & Docker Compose

Ziel:

Du verstehst wie Container miteinander sprechen,

warum Namen wichtiger sind als IPs,

und warum Docker Compose Pflicht ist.

Warum Networking jetzt kommt

Container einzeln

Ports manuell

Chaos wächst

Ab jetzt:

strukturierte Netze

Services sprechen intern

Host bleibt sauber

Bis jetzt:

Docker Networking – das Grundprinzip
Bridge Network

Name-based DNS
Container A Container B

Wichtig:

Docker bringt internes DNS

Container finden sich über Namen

IPs sind egal

Docker Default Bridge (kurz)

Probleme:

alles in einem Netz

keine Trennung

schlecht für Übersicht

➡ Eigene Netze sind besser.

docker network ls

docker network inspect bridge

Eigenes Netzwerk erstellen

Check:

docker network create lab-net

docker network ls

docker network inspect lab-net

Container im selben Netzwerk starten

Aha-Moment:

web ist DNS-Name

keine IP nötig

kein Port-Mapping

docker run -d --name web --network lab-net nginx

docker run --rm --network lab-net alpine ping web

Warum das wichtig ist (ohne Grafik)

Docker stellt internes DNS bereit

Container finden sich über Namen

Kommunikation bleibt innerhalb des Netzwerks

Nichts davon ist von außen erreichbar

Merksatz:

Interne Kommunikation ≠ Exponierung

Was hier gerade passiert ist:

Typischer Anfängerfehler (bitte merken)

Merksatz:

Container reden über Namen, nicht über Ports.

❌ IP-Adressen hardcoden
❌ localhost im Container nutzen
❌ Ports für interne Kommunikation öffnen

Warum docker run jetzt an seine Grenzen kommt

Probleme:

nicht reproduzierbar

nicht versionierbar

nicht teamfähig

➡ Compose löst das.

Beispiel:

docker run ...

docker run ...

docker run ...

Docker Compose = Infrastruktur-Code

docker-compose.yml Services

Networks

Volumes

Ein File beschreibt:

was läuft

wie es vernetzt ist

wie es gestartet wird

Erste docker-compose.yml (bewusst simpel)

Starten:

services:

 web:

 image: nginx

 container_name: web

 networks:

 - lab-net

networks:

 lab-net:

 external: true

docker compose up -d

Was Compose automatisch macht
Container-Namen

internes DNS

Start-Reihenfolge

sauberes Stoppen

docker compose ps

docker compose logs

Interne Kommunikation testen

Oder:

docker compose exec web nginx -v

docker run --rm --network lab-net alpine ping web

Ports jetzt bewusst NICHT setzen

❌

✔

Internet

Container

Reverse Proxy

➡ Ports kommen zentral, nicht pro App
➡ Das ist die Brücke zu Traefik (Tag 2)

Warum?

Volumes kurz angerissen (Preview)

Daten leben außerhalb des Containers
Container darf sterben
Daten bleiben

👉 Morgen wichtig für Apps & Backups

volumes:

 data:

Typische Fehler & Debugging

❌ Name funktioniert nicht
→ docker inspect

❌ Compose startet nicht
→ docker compose config

❌ Container sehen sich nicht
→ gleiches Network?

Checkpoint ✅ Abschnitt 6
✔ Docker Networking verstanden

✔ Container-Namen als DNS

✔ Compose als Standard

✔ Keine unnötigen Ports offen

Endzustand Tag 1 – Gesamtbild

Linux Host

Updates & Firewall Users & SSH Docker Engine

Docker Networks

Container via Compose

👉 Fundament steht.

Abschluss Tag 1

Linux sicher bedienen

Zugriffe kontrollieren

Docker verstehen

Infrastruktur strukturieren

Morgen: ➡ Reverse Proxy
➡ HTTPS & Cloudflare
➡ Applikationen
➡ Monitoring & Backup

💡 Bitte Server nicht löschen 🙂

Heute gelernt:

Tag 2 – Applikationen & Betrieb

Heute machen wir den Server produktiv
Services erreichbar machen

Angriffsfläche klein halten

Struktur statt Port-Chaos

Secure Infrastructure Lab · Lakeside Park · CSAW × HoliSec

Rückblick: Wo stehen wir?

✔ sicherer Linux-Host

✔ SSH Hardening & Firewall

✔ Docker & Docker Compose

✔ interne Docker-Netzwerke

✔ keine offenen Ports außer SSH

👉 Genau das brauchen wir jetzt.

Gestern aufgebaut:

Zielbild für heute

Ein zentraler Einstiegspunkt (Reverse Proxy)

HTTPS überall

Applikationen nur intern

Monitoring & Backups als Basis

Klarheit: Was ist produktionsreif, was nicht?

Am Ende von Tag 2:

Warum wir heute nichts „einfach öffnen“

Fühlt sich schnell an – ist aber technische Schulden.

Typischer Anfänger-Reflex:

docker run -p 3000:3000 app

docker run -p 8080:8080 app

docker run -p 9000:9000 app

Das Port-Chaos-Problem

3000

8080

9000

Internet

App 1 ❌

App 2 ❌

App 3 ❌

Probleme:

keine Übersicht

kein TLS

jede App selbst verantwortlich

Firewall-Regeln explodieren

Security-Sicht: Jeder Port ist Risiko

Ein offener Port ist ein Versprechen an das Internet.

Jeder Port bedeutet:

neue Angriffsfläche

neue CVEs

neue Logs

neue Wartung

Merksatz:

Die Lösung: Reverse Proxy (Grundidee)

443

intern

intern

Internet Reverse Proxy

App 1

App 2

Nur eine Stelle:

spricht mit dem Internet

macht TLS

macht Routing

Was ein Reverse Proxy NICHT ist

Er ist:

Verkehrsverteiler

TLS-Endpunkt

Kontrollpunkt

❌ keine Firewall
❌ kein Auth-System
❌ kein IDS/IPS

Warum Traefik (und nicht Nginx)

Nginx:

statische Configs

Reloads

viel Handarbeit

Traefik:

Docker-native

liest Labels

dynamisch

perfekt für Compose

👉 Für Self-Hosting & KMUs klarer Sieger.

Kurzer Reality-Check:

Mental Model: Traefik hört Docker zu

beobachtet laufende Container

liest deren Labels

erstellt daraus automatisch Routing-Regeln

Wichtig:

Kein Reload.

Keine statischen Configs.

Labels = Wahrheit.

Was Traefik macht:

Wichtige Design-Entscheidung (bitte merken)
Apps haben keine Ports nach außen.

keine ports: bei Apps

keine Firewall-Regeln pro App

alles geht über Traefik

Das ist der Grund, warum Tag 1 so wichtig war.

Hands-on-Vorbereitung (noch nichts starten!)

Wir erwarten:

Docker läuft

kein Traefik

keine Apps exposed

Bevor wir irgendwas deployen, prüfen wir:

docker ps

docker network ls

Checkpoint ✅ Abschnitt 1

✔ du verstehst das Port-Problem

✔ du kennst die Reverse-Proxy-Idee

✔ du weißt, warum wir Traefik einsetzen

✔ dein System ist noch „sauber“

Wenn das passt, bist du bereit:

Nächster Schritt

eigenes Docker-Netzwerk

nur Port 80/443

noch kein HTTPS

Dashboard nur lokal

👉 weiter mit Abschnitt 2: Traefik Core Setup

Jetzt bauen wir Traefik minimal & bewusst:

Abschnitt 2
Traefik Core Setup (ohne TLS)

Ziel:

Traefik läuft, hört Docker zu

und ist der einzige Einstiegspunkt nach außen.

Noch:

❌ kein HTTPS

❌ keine echten Apps

❌ kein Cloudflare

Design-Entscheidung (bitte merken)
Traefik ist Infrastruktur, keine App

Das heißt:

eigener Compose-Stack

eigenes Docker-Netzwerk

möglichst wenig Abhängigkeiten

stabil & boring

Mental Model: Traefik als Torwächter

80 internInternet Traefik Docker Services

Alles, was nicht Traefik ist:

bleibt intern

bekommt keine Ports

spricht nur über Docker-Netzwerke

Vorbereitung: Eigenes Proxy-Netzwerk

saubere Trennung

Apps können mehrere Netze haben

später wichtig für Security

Check:

Warum ein eigenes Netzwerk?

docker network create proxy

docker network ls

Projektstruktur für Traefik
Wir arbeiten bewusst strukturiert:

mkdir -p ~/workshop/compose/traefik

cd ~/workshop/compose/traefik

touch docker-compose.yml

Traefik Minimal-Konfiguration (Teil 1)
services:

 traefik:

 image: traefik:v3.0

 container_name: traefik

 command:

 - "--providers.docker=true"

 - "--providers.docker.exposedbydefault=false"

 - "--entrypoints.web.address=:80"

 ports:

 - "80:80"

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock:ro

 networks:

 - proxy

networks:

 proxy:

 external: true

Wichtige Flags – warum sie existieren

👉 Traefik liest Docker

👉 Sicherheitskritisch! Container sind nicht automatisch öffentlich

👉 Ein Einstiegspunkt, kein Chaos

--providers.docker=true

--providers.docker.exposedbydefault=false

--entrypoints.web.address=:80

Docker Socket – kritisch, aber nötig

Was bedeutet das?

Traefik kann Container sehen

aber nicht verändern (read-only)

Merksatz:

Wer Docker Socket liest, vertraut Traefik.

- /var/run/docker.sock:/var/run/docker.sock:ro

Traefik starten

Check:

Du solltest sehen:

traefik läuft

kein anderer Service exposed

docker compose up -d

docker ps

Test: Tut Traefik irgendwas?

Erwartung:

404 oder leere Antwort

👉 Das ist korrekt.
Traefik routet erst, wenn wir es sagen.

curl http://localhost

Traefik Dashboard – bewusst nur lokal

Port hinzufügen:

Restart:

Jetzt nur zu Lernzwecken:

command:

 - "--api.insecure=true"

 - "--api.dashboard=true"

ports:

 - "80:80"

 - "8080:8080"

docker compose up -d

Dashboard prüfen

Was sehen wir?

EntryPoints

Router (leer)

Services (leer)

👉 Genau so soll es jetzt sein.

Browser:

http://SERVER-IP:8080

Security-Warnung
Traefik Dashboard darf NIE öffentlich sein

Im Workshop:

ok

zum Lernen

temporär

Produktiv:

Dashboard nur intern

oder gar nicht

Typische Fehler an dieser Stelle

Debug:

❌ Docker Socket nicht gemountet
❌ falsches Netzwerk
❌ exposedbydefault=true
❌ Ports bei Apps öffnen

docker logs traefik

Checkpoint ✅ Abschnitt 2

✔ Traefik läuft stabil

✔ hört Docker zu

✔ nur Port 80 offen

✔ Dashboard sichtbar

✔ noch keine Apps exposed

Wenn das passt:

Mentale Pause (wichtig!)

keine App

kein HTTPS

kein DNS

Und trotzdem: ➡ das wichtigste Infrastruktur-Element steht

Bis hierher haben wir:

Nächster Schritt

➡ Routing zu einer Test-App
➡ Labels verstehen
➡ „Wie kommt Traffic zur App?“

👉 weiter mit Abschnitt 3: Erste App über Traefik routen

Jetzt wird Traefik nützlich:

Abschnitt 3
Erste App über Traefik routen

Ziel:

Eine interne App ist über Traefik erreichbar –

ohne Ports, ohne TLS, nur mit Labels.

Was wir jetzt bauen

HTTP :80 internBrowser Traefik Test-App

App läuft nur intern
Traefik entscheidet
Routing ist explizit

Wichtige Regel (nochmal!)
Apps bekommen keine ports:

Wenn du ports: bei Apps siehst:

falsches Setup

sofort stoppen

neu denken

Wahl der Test-App

klein

stateless

sofort sichtbar

👉 traefik/whoami

Warum?

zeigt Request-Infos

perfekt zum Lernen

kein Setup nötig

Wir nehmen:

Projektstruktur für Test-App
mkdir -p ~/workshop/compose/apps

cd ~/workshop/compose/apps

touch whoami.yml

whoami – Minimal Compose File
services:

 whoami:

 image: traefik/whoami:latest

 container_name: whoami

 networks:

 - proxy

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.whoami.rule=Host(`whoami.localhost`)"

 - "traefik.http.routers.whoami.entrypoints=web"

networks:

 proxy:

 external: true

Labels – langsam & bewusst erklärt

👉 Traefik darf diesen Container sehen

👉 Routing-Regel (Host-Header)

👉 Port 80

traefik.enable=true

routers.whoami.rule=Host(`whoami.localhost`)

entrypoints=web

App starten

Check:

docker compose -f whoami.yml up -d

docker ps

DNS vorbereiten (lokal)

👉 auf deinem Laptop:

Datei:

Linux/macOS: /etc/hosts

Windows: C:\Windows\System32\drivers\etc\hosts

Da wir noch kein echtes DNS nutzen:

SERVER-IP whoami.localhost

Test im Browser

Erwartung:

Seite mit Request-Infos

Hostname sichtbar

Container-Name sichtbar

🎉 Das ist der Aha-Moment - Es geht um die http header!

http://whoami.localhost

Was gerade passiert ist

whoamiTraefikBrowser

whoamiTraefikBrowser

HTTP Request (Host Header)

Forward Request

Response

Response

Keine Ports - Keine IPs - Nur Namen & Regeln

Traefik Dashboard prüfen

Was ist neu?

Router: whoami

Service: whoami

EntryPoint: web

👉 Dashboard ist Debug-Tool, kein Feature

http://SERVER-IP:8080

Typische Fehler & Fixes

Hostname stimmt nicht

❌ App nicht sichtbar

richtiges Network?

❌ Traefik reagiert nicht

Labels korrekt?

Debug:

❌ 404

docker logs traefik

Wichtiges Learning (bitte merken)
Routing passiert über Labels, nicht Ports.

Alles Weitere (TLS, Auth, Rate Limits):

sind Erweiterungen

bauen darauf auf

Cleanup (Disziplin!)

Warum?

sauberes System

keine Altlasten

produktionsnahes Arbeiten

docker compose -f whoami.yml down

Checkpoint ✅ Abschnitt 3
✔ App läuft ohne Ports

✔ Routing per Hostname

✔ Traefik Dashboard verstanden

✔ Traffic-Flow klar

Nächster Schritt

➡ HTTPS
➡ echte Domains
➡ Cloudflare
➡ Zertifikate automatisch

👉 weiter mit Abschnitt 4: HTTPS & Cloudflare (DNS Challenge)

Jetzt kommt die nächste Schicht:

Warum wir jetzt umbauen

einzelne Compose-Files

Lern-Setups

schnelle Experimente

Ab jetzt:

produktionsnahe Struktur

klare Verantwortlichkeiten

wiederauffindbar in 6 Monaten

Merksatz:

Ordnerstruktur ist Teil der Security.

Bis jetzt:

Mental Model: Ordner = Verantwortung
jede Komponente hat ihren Platz

Infrastruktur ≠ Applikationen

Daten leben getrennt von Code

Ziel:

Ich weiß sofort, wo ich etwas ändern oder sichern muss.

Umbau der Grundstruktur
/opt|home/docker

├── traefik/
│ ├── docker-compose.yml
│ ├── config/
│ │ ├── conf.d/*extra konfigs*
│ │ └── traefik.yml
│ └── data/
│ └── *später für Zertifikate*
├── apps/
│ ├── whoami/
│ │ ├── docker-compose.yml
│ │ └── data/
│ │
│ ├── application1/
│ │ ├── docker-compose.yml
│ │ └── data/
│ │
│ └── application2/
│ ├── docker-compose.yml
│ └── data/
└── backups/
 └── data/
 └── databases/

✅ Slide 5 – Erklärung: Was liegt wo (kurz & klar)
Was liegt wo – und warum

traefik/

- zentrale Infrastruktur

- einziger Einstiegspunkt

- Zertifikate & Routing

apps/

- jede App für sich

- eigenes Compose

- eigene Daten

backups/

- bewusst sichtbar

- kein „vergessenes Feature“

Warum sich das später auszahlt
Backups klar definierbar

einfache Migration auf neue Server

weniger Angst vor Updates

bessere Übergabe an andere Admins

Das ist:

sauber

professionell

replizierbar

👉 genau das, was Infrastruktur sein soll

Neues Docker Compose
services:

 traefik:

 image: traefik:latest

 container_name: traefik

 ports:

 - "80:80" #expose http

 - "8080:8080" #expose dashboard

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 - ./config/traefik.yaml:/etc/traefik/traefik.yaml:ro #read access to traefik config

 - ./config/conf.d/:/etc/traefik/conf.d/:ro # additional traefik configurations

 networks:

 - proxy

 restart: unless-stopped

networks:

 proxy:

 external: true

Traefik Config

https://doc.traefik.io/traefik/

global:

 checkNewVersion: false

 sendAnonymousUsage: false

log:

 level: DEBUG

api:

 dashboard: true

 insecure: true

entryPoints:

 web:

 address: :80

providers:

 docker:

 endpoint: "unix:///var/run/docker.sock"

 network: proxy

 exposedByDefault: false

https://doc.traefik.io/traefik/

Abschnitt 4
HTTPS & Cloudflare – sauber und reproduzierbar

Ziel:

Traefik stellt automatisch gültige TLS-Zertifikate aus

– ohne offene Challenge-Ports

– ohne App-spezifische TLS-Configs.

Warum HTTPS nicht optional ist

Passwörter im Klartext

Session Hijacking

Browser-Warnungen

kein Vertrauen

Merksatz:

Alles, was über das Internet geht, ist TLS-terminiert.

Ohne HTTPS:

Klassischer HTTPS-Fail (bitte nicht!)

443

443

Internet

App mit TLS ❌

Andere App ❌

Probleme:

Zertifikate pro App

unklare Zuständigkeiten

Ablauf vergessen

Downtime

Zielbild: Zentrales TLS

HTTP internInternet HTTPS Traefik TLS Apps

Nur Traefik spricht TLS
Apps bleiben simpel
Zertifikate automatisiert

Rolle von Cloudflare (klar abgrenzen)

DNS

DDoS-Schutz

Proxy (optional)

Cloudflare ist nicht:

deine Firewall

dein TLS-Endpunkt (bei Full Strict)

👉 Wir nutzen Cloudflare für DNS & API-Zugriff

Cloudflare ist:

Warum DNS-Challenge?

DNS APITraefik Cloudflare Let's Encrypt

Vorteile:

kein Port 80 nötig

Firewall-freundlich

Wildcard-Zertifikate möglich

perfekt für Server ohne Public HTTP

Vorbereitung: Domain & DNS

Domain bei Cloudflare

Nameserver zeigen auf Cloudflare

Zugriff auf Zone

👉 Noch keine Records nötig

Voraussetzung:

Cloudflare API Token erstellen

Zone - DNS - Edit

Zone - Zone - Read

Wichtig:

Scoped Token

kein Global API Key

💡 Token niemals committen

Benötigte Rechte:

Token sicher speichern (Server)

Wichtig! Secrets sollen nicht geteilt werden und auch nicht in einem Source Code Management aufpoppen.

vim ./traefik/.env

CF_DNS_API_TOKEN=xxxxxxxxxxxxxxxx

optional permissions einschränken

chmod 600 ./traefik/.env

Warum wir Secrets trennen

Secrets gehören nicht ins Compose-File.

Vorteile:

kein Leak im Git

klarer Ort

einfacher Wechsel

Merksatz:

Traefik für TLS vorbereiten
entryPoints:

 web:

 address: :80

 http:

 redirections:

 entryPoint:

 to: websecure

 scheme: https

 websecure:

 address: :443

certificatesResolvers:

 cloudflare:

 acme:

 email: "christian.gubesch@gmail.com"

 storage: /var/traefik/certs/cloudflare-acme.json

 caServer: "https://acme-v02.api.letsencrypt.org/directory"

 dnsChallenge:

 provider: cloudflare

 resolvers:

 - "1.1.1.1:53"

 - "8.8.8.8:53"

Optional TLS Config
vim .traefik/config/conf.d/tls.yaml

tls:

 options:

 default:

 minVersion: VersionTLS12

 sniStrict: true

 curvePreferences:

 - CurveP256

 - CurveP384

 - CurveP521

 cipherSuites:

 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

Docker Compose anpassen
services:

 traefik:

 image: traefik:latest

 container_name: traefik

 ports:

 - "80:80"

 - "443:443" #expose https

 - "8080:8080"

 environment:

 - CF_DNS_API_TOKEN=${CF_DNS_API_TOKEN} #Cloudflare API Token with access to edit DNS entries for certain domains

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 - ./config/traefik.yaml:/etc/traefik/traefik.yaml:ro

 - ./config/conf.d/:/etc/traefik/conf.d/:ro

 - ./data/certs:/var/traefik/certs:rw #certificate store -> this should be backuped

 networks:

 - proxy

 restart: unless-stopped

networks:

 proxy:

 external: true

Traefik neu starten

Logs beobachten:

👉 Noch keine Zertifikate – das ist korrekt.

docker compose down

docker compose up -d

docker logs -f traefik

HTTPS passiert erst bei Routing!

Traefik holt Zertifikate nur, wenn ein Router TLS verlangt.

➡ Das machen wir gleich mit einer Test-App

Wichtig:

Test-App erneut – jetzt mit TLS
Wir nehmen wieder whoami, aber HTTPS.

labels:

 - "traefik.enable=true"

 - "traefik.http.routers.whoami.rule=Host(`whoami.example.com`)"

 - "traefik.http.routers.whoami.entrypoints=websecure"

 - "traefik.http.routers.whoami.tls.certresolver=cloudflare"

DNS Record setzen

Type: A

Name: whoami

IP: SERVER-IP

Proxy: DNS only (graue Wolke)

💡 Für den Workshop absichtlich kein Proxy

Optional wäre es auch möglich einen wildcard DNS record zu setzen

In Cloudflare:

Cooles Zusatzfeature

Lokalen DNS Server verwenden und Record setzten

In Hosts File DNS Eintrag hinzufügen

DNS Challange funktioniert auch mit Sub-Sub Domainen

💡 Wichtig ist eigentlich nur, dass der HTTP Header stimmt!

Für uns heißt das eigentlich jede Applikation bekommt eigene Subdomain.

Es wäre auch möglich /Pfade zu verwenden ohne Subdomainen

Wenn man in Cloudflare keine manuellen DNS Records setzten mag kann man:

Test im Browser

Erwartung:

gültiges Zertifikat

Let’s Encrypt als Issuer

Seite lädt ohne Warnung

🎉 HTTPS steht.

https://whoami.example.com

Was gerade passiert ist

Let's EncryptCloudflare DNSTraefik

Let's EncryptCloudflare DNSTraefik

create TXT record

DNS proof

certificate

Kein HTTP-Challenge.
Kein Port-Freigaben.

Typische Fehler & Debugging

DNS korrekt?

Token-Rechte?

Logs:

❌ Permission denied auf acme.json

chmod 600

❌ Zertifikat kommt nicht

docker logs traefik | grep acme

Security-Hinweis (wichtig!)

acme.json niemals öffentlich

niemals ins Git

Zertifikate sind Secrets:

Checkpoint ✅ Abschnitt 4
✔ Cloudflare DNS verstanden

✔ DNS-Challenge erklärt

✔ Traefik stellt Zertifikate aus

✔ HTTPS funktioniert

✔ Apps bleiben TLS-frei

Nächster Schritt

➡ echte Applikationen
➡ Volumes & Daten
➡ produktionsnahe Compose-Files

👉 weiter mit Abschnitt 5: Erste produktive Apps

Jetzt wird es real:

Abschnitt 5
Produktive Applikationen – sauber & wartbar

Ziel:

Reale Services laufen stabil, HTTPS-gesichert

und sind wartbar & backupfähig.

Heute:

✔ Uptime Kuma (Monitoring)

✔ Vaultwarden (Passwortmanager)

(optional) Stirling PDF als Demo

Vor dem Start: Grundregeln für Apps

❌ keine ports: bei Apps

✔ immer eigenes Volume

✔ Konfig über ENV, nicht im Container

✔ ein Service = ein Compose-Block

✔ klare Namen

Merksatz:

Container sind Wegwerfware – Daten nicht.

Bitte merken:

Struktur für produktive Apps

➡ Ein Repo, viele kleine Stacks

Pro App:

apps/

├── uptime-kuma/
│ ├── docker-compose.yml
│ └── data/
├── vaultwarden/
│ ├── docker-compose.yml
│ └── data/

Teil A
Uptime Kuma – Monitoring als erstes

Warum wir mit Monitoring starten

Wenn Monitoring fehlt, merkst du Fehler zu spät
Monitoring ist kein Luxus
Erste App = einfach & sichtbar

Uptime Kuma – Compose File (1)
mkdir uptime-kuma

cd uptime-kuma

vim docker-compose.yml

services:

 uptime-kuma:

 image: louislam/uptime-kuma:latest

 container_name: uptime-kuma

 restart: unless-stopped

 volumes:

 - ./data:/app/data

 networks:

 - proxy

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.uptime.rule=Host(`uptime.example.com`)"

 - "traefik.http.routers.uptime.entrypoints=websecure"

 - "traefik.http.routers.uptime.tls=true"

 - "traefik.http.routers.uptime.tls.certresolver=cloudflare"

networks:

 proxy:

 external: true

Uptime Kuma – Compose File (2)
services:

 uptime-kuma:

 image: louislam/uptime-kuma:latest

 container_name: uptime-kuma

 restart: unless-stopped

 volumes:

 - uptimekuma-data:/app/data #use docker volume

 - /var/run/docker.sock:/var/run/docker.sock # container monitoring

 networks:

 - proxy

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.uptime.rule=Host(`uptime.example.com`)"

 - "traefik.http.routers.uptime.entrypoints=websecure"

 - "traefik.http.routers.uptime.tls=true"

 - "traefik.http.routers.uptime.tls.certresolver=cloudflare"

volumes:

 uptimekuma-data:

 driver: local

networks:

 proxy:

 external: true

Warum diese Punkte wichtig sind

👉 Server reboot ≠ App down

👉 Daten überleben Container - Optional kann man auch mit Docker Volumes arbeiten!

👉 Routing zentral, nicht im Code

restart: unless-stopped

volumes: # mount to file system

 - ./data:/app/data

volumes: # docker volumes

 - uptimekuma-data:/app/data

labels:

App starten & prüfen

Browser:

🎉 Erste produktive App steht.

docker compose up -d

docker ps

https://uptime.example.com

Permissions-Check (wichtig!)

Volume gehört Docker:

nicht chmod 777

Docker regelt Ownership

Merksatz:

Volumes nicht manuell anfassen, außer du weißt warum.

docker inspect uptime-kuma | grep -A5 Mounts

Erste sinnvolle Checks anlegen

HTTPS-Check auf eigene Domain

Zertifikatsablauf prüfen

Docker Container Überwachen

später: externe Dienste

In Uptime Kuma:

Checkpoint ✅ Uptime Kuma
✔ App läuft stabil

✔ HTTPS funktioniert

✔ Daten persistent

✔ kein Port offen

Teil B
Vaultwarden – Passwortmanager (Core Setup)
Warum Vaultwarden heikel ist

speichert Secrets

Internet-exponiert

braucht saubere Defaults

👉 Wir machen nur Basis, kein Endausbau.

Vaultwarden – Compose File
services:

 vaultwarden:

 image: vaultwarden/server:latest

 container_name: vaultwarden

 restart: unless-stopped

 environment:

 - SIGNUPS_ALLOWED = {$SIGNUPS_ALLOWED} #manual account creation

 - ADMIN_TOKEN={VAULTWARDEN_ADMIN_TOKEN} #access admin panel

 - DOMAIN={$DOMAIN} #domain of application

 - WEBSOCKET_ENABLED={$WEBSOCKET_ENABLED} #smoother application handling

 volumes:

 - ./vaultwarden:/data

 networks:

 - proxy

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.vault.rule=Host(`vault.example.com`)"

 - "traefik.http.routers.vault.entrypoints=websecure"

 - "traefik.http.routers.vault.tls=true"

 - "traefik.http.routers.vault.tls.certresolver=cloudflare"

networks:

 proxy:

 external: true

Vaultwarden starten

Browser:

➡ Account manuell anlegen

docker compose up -d

docker ps

https://vault.example.com

Vaultwarden: Minimal-Hardening (Hinweis)

Admin Token

2FA

Backup-Strategie

regelmäßige Updates

Nicht jetzt, aber merken:

Checkpoint ✅ Vaultwarden
✔ HTTPS aktiv

✔ Registrierungen kontrolliert

✔ Daten persistent

✔ keine offenen Ports

Typische Fehler bei Apps

Logs prüfen:

❌ HTTPS geht nicht

Labels / DNS prüfen

❌ Daten weg

Volume vergessen

❌ App startet nicht

docker compose logs

Schematischer Aufbau
Internet

Cloudflare Proxy

Server/Traefik

Uptime Kuma Vaultwarden

Volumes/Filemounts

Checkpoint ✅ Abschnitt 5 (gesamt)
✔ mindestens eine produktive App

✔ sauberes Compose

✔ TLS zentral

✔ Volumes korrekt

✔ Struktur verständlich

Nächster Schritt

➡ Backups (Duplicati)
➡ Restore-Denken
➡ Monitoring sinnvoll erweitern

👉 weiter mit Abschnitt 6: Backup & Betrieb (Basics)

Jetzt kümmern wir uns um:

Abschnitt 6
Backup & Betrieb – Basics, aber richtig

Ziel:

Daten sind gesichert, Ausfälle werden bemerkt

und der Betrieb ist vorhersehbar, nicht reaktiv.

Die wichtigste Wahrheit zuerst
Backup ohne Restore-Test ist kein Backup.

Viele Systeme:

sichern fleißig

testen nie

fallen im Ernstfall durch

Nicht sichern:
Images

laufende Container

Sichern:
Volumes

Konfigs

Compose-Files

Secrets

Was wir wirklich sichern?

❌

✔

✔

✔

Container NICHT sichern

Volumes

BackupCompose Files

Configs / Secrets

Backup-Ziel definieren (realistisch)

Wie viel Datenverlust ist ok? (RPO)

Wie lange darf Restore dauern? (RTO)

Wo liegen die Backups?

👉 Für KMUs oft:

täglich

offsite

automatisiert

Fragen:

Teil A
Duplicati – pragmatische Backup-Lösung

Warum Duplicati?
Open Source

Containerisiert

Verschlüsselung

viele Backends

Nicht perfekt – aber praxisnah.

Duplicati – Grundsetup
services:

 duplicati:

 image: duplicati/duplicati:latest

 container_name: duplicati

 restart: unless-stopped

 volumes:

 - ./data:/data

 - /home/deploy/workshop:/source:ro

 - /home/deploy/backups:/backups

 networks:

 - proxy

 labels:

 - "traefik.enable=true"

 - "traefik.http.routers.duplicati.rule=Host(`backup.example.com`)"

 - "traefik.http.routers.duplicati.entrypoints=websecure"

 - "traefik.http.routers.duplicati.tls=true"

 - "traefik.http.routers.duplicati.tls.certresolver=cloudflare"

networks:

 proxy:

 external: true

Warum diese Mounts?

👉 Nur lesen, nie schreiben

👉 Lokales Ziel (Demo)

Produktiv:

S3

Storage Box

Offsite Location

/source:ro

/backups

Duplicati starten

Browser:

docker compose up -d

docker ps

https://backup.example.com

Backup-Job anlegen (Demo)

Source: /source

Destination: /backups

Verschlüsselung: immer

Schedule: täglich

Retention: z.B. 30 Tage

💡 Passwort sicher dokumentieren!

In der UI:

Restore-Denken (Pflicht!)

Volume gelöscht

Server neu

Was brauchst du?

Antwort:

Compose-Files

Volumes

Secrets

👉 Mindestens einmal Restore testen!

Gedankenexperiment:

Teil B
Monitoring sinnvoll nutzen

Monitoring

wissen, dass etwas kaputt ist

nicht alles messen

Was ist mit Security Monitoring?
Büchse der Pandora

Patches of Server

Backups

Applications/Images

Ziel:

Sinnvolle Checks mit Uptime Kuma

HTTPS Endpoint

Zertifikatsablauf

Traefik erreichbar

App erreichbar

Uptime Kuma

Traefik

Apps

Checks:

Typische Monitoring-Fehler

Merksatz:

Ein Alarm ohne Reaktion ist Lärm.

❌ zu viele Checks
❌ niemand schaut rein
❌ keine Alerts

Betrieb: Updates & Lifecycle

Wer macht Updates?

Wann?

Wie teste ich vorher?

Was passiert bei Fehlern?

Fragen, die ihr euch stellen müsst:

Überlegung

Idee: Eigener Server mit reinen Monitoring/Operations Task

Beispiel Stack:

Uptime Kuma als Basis

PatchMon als Patch Management

Wazuh als Security Plattform

Eigentlich muss Monitoring extern passieren nie am selben Server.

Demo PatchMon
https://patchmon.smesecurity.eu

https://patchmon.smesecurity.eu/

Container-Updates – ehrlich betrachtet

manuell (docker compose pull)

halbautomatisch

vollautomatisch (Watchtower)

👉 Watchtower = Diskussion, kein Muss

Optional: Security Monitoring mittels trivy https://trivy.dev/

Optionen:

https://trivy.dev/

Logs & Debugging im Alltag

👉 Logs sind erste Hilfe, nicht letzter Ausweg.

docker compose logs

docker logs traefik

journalctl -u docker

Ausblick für Security und Operations
Authentik (SSO)

CrowdSec

Rate Limiting

Read-only Container

IDS / SIEM

CI/CD

Ansible/GitOps

Warum?

Erst Betrieb im Griff, dann Ausbau.

Wann DIY endet

kleine Teams

Lernphasen

überschaubare Risiken

Managed sinnvoll bei:

SLA

Compliance

wenig Personal

hoher Schaden bei Ausfall

DIY gut für:

Abschluss – Takeaways
Infrastruktur ist Systemdenken

Security ist Prozess, kein Tool

Weniger ist oft mehr

Verstehen schlägt Kopieren

Danke & offene Fragen 🙌

Was nehmt ihr mit?
Was würdet ihr produktiv so machen?
Wo würdet ihr Hilfe holen?

CSAW × HoliSec
Lakeside Science & Technology Park

Feedback via Menti: https://menti.com

https://menti.com/

Advanced Outlook
Wenn das Fundament steht

Diese Themen sind bewusster Ausblick
👉 keine Konfiguration
👉 keine Hands-on-Pflicht
👉 Fokus: Verständnis & Entscheidungsfähigkeit

Warum Advanced erst später kommt

Komplexität ist kein Feature.

Advanced-Setups machen nur Sinn, wenn:

Betrieb stabil läuft

Basics automatisiert sind

Verantwortlichkeiten klar sind

Merksatz:

Entscheidungsleitfaden

Welches Problem löst das?

Für wen?

Zu welchem Preis (Komplexität)?

Frage dich immer:

Abschnitt A
Identity & Access – Zentrale Anmeldung

Use Case: SSO / Identity Gateway (Authentik)

HTTPS HTTPS forwardAuth

OK

Nur Admins

OK

User Cloudflare Traefik Authentik

Vaultwarden

Uptime Kuma

Stirling PDF

Problem, das gelöst wird:

viele Apps, viele Logins

Offboarding schwierig

keine zentrale Policy

Wann ist das sinnvoll?
5+ Apps

mehrere User

MFA / Rollen nötig

Auditing

Was Authentik NICHT ist

❌ kein Passwortmanager
❌ kein VPN
❌ kein Ersatz für App-Security

👉 Es ist ein Zugangs-Gateway (IAM).

Abschnitt B
Zero Trust – Keine Apps öffentlich

Use Case: Zero-Trust-Zugriff

authenticatedUser Zero Trust Access Traefik internal

Admin UIs

Internal Tools

Problem, das gelöst wird:

Admin-UIs im Internet

VPN unhandlich

Zugriff schwer steuerbar

Wann ist das sinnvoll?
Admin-Oberflächen

kleine, definierte Teams

minimaler Internet-Footprint

Zero Trust ≠ VPN

Netzwerkzugang

oft „alles oder nichts“

Zero Trust:

Applikationszugang

Identitätsbasiert

fein granuliert

VPN:

Abschnitt C
CrowdSec – Automatische Reaktion auf Angriffe

Use Case: CrowdSec + Traefik + SSH

Bruteforce

Scanner

Credential Stuffing

Wann sinnvoll?

öffentliche Login-Seiten

SSH öffentlich erreichbar

wiederkehrender Angriffs-Traffic

Problem, das gelöst wird:

Abschnitt D
WAF & Rate Limiting – Schutz vor Abuse

Use Case: WAF vor Applikationen

Internet Cloudflare WAF Traefik Web Apps / APIs

Problem, das gelöst wird:

Bot-Traffic

Formular-Abuse

API-Missbrauch

Wann sinnvoll?

öffentliche APIs

Kontaktformulare

Login-Endpunkte

WAF ≠ Sicherheitsgarantie
reduziert Noise

verhindert triviale Angriffe

ersetzt keine sichere App

Abschnitt E
Immutable / Read-only Container

Use Case: Read-only Container

write blocked

Container FS: read-only

No writes

Volumes for data

tmp as tmpfs

Problem, das gelöst wird:
Schadcode im Container

unkontrollierte Writes

Wann sinnvoll?
einfache Webapps

APIs

Compliance-Anforderungen

Realitätsscheck
nicht jede App unterstützt das

erhöht Setup-Komplexität

Debugging schwieriger

👉 Optionales Hardening

Abschnitt F
Update- & Release-Strategie

Use Case: Staging to Produktion

Test

yes

no

Git Repo Staging VM OK?

Production

Fix & Retry

Problem, das gelöst wird:
kaputte Updates

Downtime

Freitagabend-Deployments

Wann sinnvoll?
mehrere produktive Apps

Business-kritische Systeme

Abschnitt G
Zentrales Logging

Use Case: Logs an einem Ort

App Logs

Log CollectorTraefik Logs

Host Logs

Search / Viewer

Problem, das gelöst wird:
Debugging über SSH

Logs verstreut

Wann sinnvoll?
viele Services

Audit-Anforderungen

häufige Fehleranalyse

Abschnitt H
Backup-Strategie – 3-2-1

Use Case: 3-2-1 Backup (praxisnah)

Volumes

Local Backup Offsite Backup

Immutable / Versioned
Storage

Problem, das gelöst wird:
Ransomware

Datenverlust

menschliche Fehler

Wann sinnvoll?
kritische Daten

rechtliche Anforderungen

längere Aufbewahrung

Zusammenfassung – Advanced heißt nicht besser

Stabil schlägt komplex

Security ist ein Prozess

Nicht jedes Tool passt zu jedem Team

Know your limits

Merksätze zum Mitnehmen:

Nächste Schritte für euch

Was brauchen wir wirklich?

Was können wir betreiben?

Was lagern wir aus?

Fragen für den Transfer:

Danke fürs Mitmachen 🙌

Fragen? Diskussion? Austausch?

CSAW × HoliSec
Lakeside Science & Technology Park

