Secure Infrastructure Lab

Linux, Container & sichere Server-Setups flir KMUs

| Lakeside Science & Technology Park
22.-23.01.2026

Eine Kooperation von
Coding School Worthersee (CSAW) & HoliSec

Herzlich Willkommen &

Worum geht es hier?

» Praxis statt Theorie
= Reale Server, reale Fehler, reale Losungen

= Fokus auf verstehen, nicht blind kopieren

Fur wen ist dieser Workshop?

» JT-affine Entscheider:innen
» Admins & Tech-Verantwortliche in KMUs

= Entwickler:innen mit Infrastruktur-Verantwortung

< Kein Vorwissen notwendig — Neugier reicht wir starten bei 0

Wie wir arbeiten

= Kurze Inputs
= Viel Hands-on
= Fehler sind Teil des Lernprozesses

= Fragen jederzeit erlaubt .=

. Slides fiihren - erklart wird im Terminal

Was ihr am Ende konnt

Nach diesen zwei Tagen konnt ihr:

= Linux-Server sicher betreiben
= Container sinnvoll einsetzen

= Applikationen sauber hosten

= Risiken realistisch einschitzen

= bessere Infrastruktur-Entscheidungen treffen

Struktur des Workshops

Tag 1 - Fundament

= Linux verstehen & absichern
= SSH, User, Updates
= Docker & Docker Compose

» Container & Netzwerke verstehen

Tag 2 - Anwendungen & Betrieb

= Applikationen inbetriebnehmen
= Reverse Proxy & HTTPS

= Monitoring & Backups

= Best Practices flir KMUs

= Ausblick: Advanced Security

Ablauf & Organisation

= Hands-on auf eigenen VMs
= Arbeiten im eigenen Tempo
= Trainer unterstiitzen aktiv

= Pausen nach Bedarf

= Bitte meldet euch, wenn ihr hingt — nicht warten!

Tag 1 — Linux & Container-Fundament

Ziel von heute:

» Ein sicherer Linux-Server
= Saubere Zuginge
= Docker lauft

= Verstandnis statt copy & paste

Tag 1 — Linux & Container-Fundament

Secure Infrastructure Lab - Lakeside Park - CSAW x HoliSec

Heute bauen wir das Fundament:

= Linux sicher verstehen
= Zuginge sauber aufsetzen

= Docker ohne Magie begreifen

Zielbild: Was soll heute Abend stehen?

Am Ende von Tag 1 habt ihr:

u einen harten, sauberen Linux-Host

= User- und Rechte-Konzept, kein root-login
. SSH-Keys, SSH Hardening

= Updates & Wartung aufgesetzt

= Docker installiert + Basics verstanden

= Docker Networking + Compose als Grundlage

Tag 2 baut darauf auf: Reverse Proxy, TLS, Cloudflare, Apps, Monitoring, Backup

Arbeitsweise heute (wichtig)

= Hands-on > Theorie (ca. 70/30)
» Jch erklare kurz — dann macht ihr’s selbst

= Fehler sind normal: wir debuggen live

= Wenn du hingen bleibst: Hand heben (nicht warten)

Regel: Slides fiihren — gearbeitet wird im Terminal

Setup: Wie arbeiten wir?

Ihr habt eine Netcup VM mit Public IP (ggf. 2er-Teams).

Tools:

= Terminal (Pflicht)
= VS Code Remote SSH (optional, aber sehr praktisch)

Ziel: Thr konnt alles auch ohne VS Code im Terminal.

Unsere VMs bei Netcup

ID IP-Adresse Login-User Teilnehmer Passwort
1 XXX.XXX.xxX.101 root Teilnehmer 1
2 XXX.XXX.XxX.102 root Teilnehmer 2
3 XXX.XXX.XXX.103 root Teilnehmer 3
4 XXX.XXX.XxX.104 root Teilnehmer 4
5 XXX.XXX.XXX. 105 root Teilnehmer 5
6 XXX.XXX.XxX.106 root Teilnehmer 6
7 XXX.XXX.XxX.107 root Teilnehmer 7

8 XXX.XXX.XxX.108 root Teilnehmer 8

Mental Model: Host, Netzwerk, Dienste

Laptop ——SSH—» Linux VM (Host) Docker Engine Container / Services

Heute & morgen

Heute:
= Linux VM + Docker Engine verstehen
Morgen:

= Container sicher exponieren

Agenda Tag 1

= Qrientierung & Linux Basics (Navigation, Files, Editor)

Users, Gruppen, Rechte (Permissions!)
= SSH Keys & Hardening

= Updates, UFW, Basis-Hardening

= Docker ohne Magie (docker run)

= Docker Networking & Docker Compose

Abschnitt 1
Linux Orientierung: ,Wo bin ich hier?"”

Ziel: Du kannst dich im System bewegen, Dateien lesen & anlegen
Ohne das wird jeder Hardening-Schritt spater frustig.

Das Linux-Filesystem (nur das Notigste)

/etc

Hands-on: Orientierung im Terminal

pwd
whoami
hostname
uname -a
ls -lah

Mini-Ziel:

= Ich weifS, wer ich bin
= Ich weifS, wo ich bin

= Ich sehe, was hier liegt

Navigation: cd, Is, less (Profi-Minimum)

cd /

ls -lah

cd /etc

ls -lah | head

Dateien ansehen ohne zu zerstoren:
less /etc/ssh/sshd_config
Shortcut:

= g=quit

= /wort = suchen

Hands-on: Workspace anlegen (Ordnerstruktur)

Wir arbeiten geordnet, damit man’s spater wiederfindet:

mkdir -p ~/workshop/{labs,notes,compose,scripts}
tree -a ~/workshop || true

Falls tree fehlt:

sudo apt update && sudo apt install -y tree

Dateien erstellen: touch, cat, heredoc

cd ~/workshop/notes
touch commands.txt
echo "Tag 1 - Command Log" > commands.txt

Mehrzeilig (super fiir Configs):

cat << >> commands.txt
pwd

whoami

ls -lah

Editor: vim oder nano (du entscheidest)

Vim Quickstart (Minimum):

- 1 \-» insert
- Esc \-» normal mode

- :wqg \- speichern & beenden

vim ~/workshop/notes/commands.txt
Oder nano:

nano ~/workshop/notes/commands.txt

VS Code Remote SSH (optional, aber nice)

Wenn du willst: Remote SSH nutzen, um schneller Files zu bearbeiten.

Wichtig:
Auch mit VS Code musst du die Commands verstehen.

Wenn VS Code nicht geht: kein Stress - Terminal reicht.

Checkpoint & Abschnitt 1

Wenn das passt, bist du richtig:

» / dukannst navigieren (cd, Is, less)
= / duhast ~/workshop/ Struktur

» / du kannst Files erstellen und editieren

Abschnitt 2
Users, Gruppen & Berechtigungen (EXTREM wichtig)

Ziel: Du verstehst warum ,,Permission denied passiert
und wie du’s sauber 10st (ohne alles 777 zu machen).

Mini-Theorie: Ownership & Permissions

Jede Datei hat:

= Owner (User)
= Group

= Mode Bits: rwx fiir user/group/others
Beispiel:
-TW-T----- 1 dihuser admin 531 Jan 8 12:01 secrets.txt

Merksatz:
Owner/Group bestimmen wer, rwx bestimmen was.

Hands-on: Permissions lesen lernen

cd ~/workshop
touch fileA
ls -1 fileA
stat fileA

Zeig mir:

= Owner?
= Group?
= Rechte?

Cooles Bash-Snippet: Rechte hiibsch anzeigen

perm() { stat -c "%A %U:%G %n" "$@"; }
perm ~/workshop/fileA

Optional gleich in ~/.bashrc speichern:

echo 'perm(){ stat -c "%A %U:%G %n" "$@"; }' >> ~/.bashrc
source ~/.bashrc

Hands-on: chmod / chown / chgrp (Basics)

mkdir -p ~/workshop/labs/perm-demo
cd ~/workshop/labs/perm-demo

touch secret.txt

perm secret.txt

Rechte andern:

chmod 600 secret.txt
perm secret.txt

Owner dndern (nur mit sudo):

sudo chown dihuser:dihuser secret.txt
perm secret.txt

Warum "chmod 777" verboten ist

Problem: Permission denied

chmod 777——» Everyone can write — Risk

Wir arbeiten mit:

= Gruppen
= gezielten Rechten

= nachvollziehbaren Changes

Use groups + least privilege————»

Clean, auditable

Checkpoint & Abschnitt 2 (bis hier)

= «/ dukannstls -1interpretieren
= /' dukennst chmod/chown/chgrp
= duweiflt, warum 777 Mist ist

Nachster Schritt

Jetzt bauen wir das sauber in ein Server-Setup ein:

= User dihuser + sudo
= SSH Keys

= SSH Hardening

= Updates & Firewall

weiter mit Abschnitt 3

Abschnitt 3
User, sudo & SSH Hardening

Ziel:

Kein Root-Login mehr, saubere User, nur SSH-Keys, nachvollziehbare Zuginge.

Warum wir Root loswerden miissen

= Root hat keine Sicherheitsleine
= Jeder Fehler = Full Compromise

= Logs sind schlechter nachvollziehbar

Best Practice:

Root nur fiir Notfille — nie fiir Daily Work

Zielbild: Zugriffskonzept

Laptop ——SSH Key—» dihuser User

——sudo—»

= SSH Login nur als normaler User
= Root-Zugriff nur via sudo

= Alles ist logbar

root Rechte

Hands-on: Root Passwort setzen (falls nicht erfolgt)

passwd

. Auch wenn Root spiter nicht loginfdhig ist:

= Starkes Passwort

= Sicher im Passwortmanager

Benutzer anlegen: dihuser

adduser dihuser

Fragen:

= Passwort setzen (temporar ok)

= User-Infos optional

dihuser User zu sudo hinzufiigen

usermod -aG sudo dihuser

Test (noch als root):

groups dihuser

Wechsel zu dihuser

su - dihuser
whoami

. Ab jetzt: wir arbeiten nicht mehr als root

sudo verstehen (wichtig!)

sudo ls /root
sudo whoami

Was passiert hier?

= sudo fragt dein Passwort
= Aktion wird geloggt
= Zeitlich begrenzter Cache

Logs:

sudo journalctl -u sudo

Warum sudo besser ist als su

su - root sudo
no audit logged
Unsichtbare Aktionen Nachvollziehbar

In Firmenumgebungen:

= sudo = Pflicht

= su =verboten

SSH: Authentifizierung

verstehen

Zwei Wege:

= X Passwort
" SSH Key (asymmetrisch)

Laptop Server

SSH Public Key

>
Challenge
«
Signed Response
>
Login OK
4.

Laptop Server

Hands-on: SSH Key lokal erzeugen

Auf deinem Laptop, nicht auf dem Server!
ssh-keygen -t ed25519 -C "secure-infra-lab
Empfehlungen:

= ed25519

= Key-Passphrase setzen

Public Key auf Server kopieren

ssh-copy-id dihuser@<SERVER-IP>

Test:

ssh dihuser@<SERVER-IP>

Login ohne Passwort

SSH Konfiguration verstehen
Config-Datei:

sudo vim /etc/ssh/sshd_config

Wir dndern gezielt, nicht blind.

SSH Hardening — Pflicht-Settings

PermitRootLogin no
PasswordAuthentication no
PubkeyAuthentication yes
ChallengeResponseAuthentication no
UsePAM yes

. UsePAM bleibt an = Login Accounting

Sichere Anderung mit Backup & Test

sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak
sudo vim /etc/ssh/sshd_config

Config testen:

sudo sshd -t

A Nur wenn kein Output kommt, ist alles OK

SSH neu starten (vorsichtig!)

WICHTIG:

» Aktive SSH-Session offen lassen

= Zweite Session zum Testen o6ffnen

Typische Fehler & Debugging

X Login geht nicht mehr?

sudo journalctl -u ssh -n 50

Checkliste:

= Tippfehler?

= sshd -t vorher ok?
= Richtiger User?

= Public Key richtig?

authorized keys richtig prifen

ls -lah ~/.ssh
ls -lah ~/.ssh/authorized keys

Rechte miissen sein:

chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized_keys

Mini-Exkurs: Warum Permissions hier kritisch sind

SSH ist streng:

= falsche Rechte - Login verweigert

= Security > Convenience

Loose Permissions SSH refuses login Security > Comfort

Checkpoint 8 Abschnitt 3

v/ Login nur als dihuser
v/ SSH Key funktioniert
v Root Login deaktiviert

v/ Passwort-Login aus

v/ sudo verstanden & nutzbar

Ausblick nachster Abschnitt

Jetzt, wo der Zugang sicher ist:
Systempflege & Schutz:
= Updates

= unattended-upgrades
= UFW Firewall

= Minimal Exposure

<~ weiter mit Abschnitt 4

Abschnitt 4
Systempfilege, Updates & Firewall

Ziel:

Ein Server, der aktuell, wartbar und minimal exponiert ist.

Warum Updates Security sind

= 80 % der erfolgreichen Angriffe nutzen:
= bekannte Schwachstellen
= ungepatchte Systeme

= Zero-Days sind selten

= Updates schlagen fancy Security-Tools
Merksatz:

Patchen ist die billigste Security-Mafnahme.

Mental Model: Angriffstflache reduzieren

alles offen—»{ Server X

Internet

nur SSH—» Server

Je weniger erreichbar:

= desto weniger Risiko

= desto weniger Stress

Hands-on: Paketverwaltung verstehen

sudo apt update
sudo apt list --upgradable

Upgrade durchfiihren:

sudo apt upgrade
Optional (Kernel / libc):

sudo apt full-upgrade

Autoremove & Cleanup (Hygiene)

sudo apt autoremove
sudo apt autoclean

. Halt das System schlank & iibersichtlich

unattended-upgrades: Automatische Security-Patches

Installation:

sudo apt install -y unattended-upgrades

Interaktive Basiskonfiguration:

sudo dpkg-reconfigure unattended-upgrades

,Yes“ fiir automatische Updates

unattended-upgrades — was passiert wirklich?

Konfig-Datei:
/etc/apt/apt.conf.d/50unattended-upgrades
Wichtig:

= Security Updates automatisch

= Reboots nicht blind tagsiiber

Automatische Reboots kontrollieren

sudo vim /etc/apt/apt.conf.d/50unattended-upgrades

Empfohlene Settings:

Unattended-Upgrade: : Automatic-Reboot "false";

. Reboots spiter bewusst durchfiihren

Status & Logs priifen

systemctl status unattended-upgrades
less /var/log/unattended-upgrades/unattended-upgrades.log

Checkpoint 4 Updates

= / Updates durchgefiihrt
= / unattended-upgrades aktiv
=/ System ist patchfahig

Firewall am Linux Host

Warum Firewall trotz Cloud wichtig ist

= (Cloud # Firewall
= Security Groups # Host Firewall

= Defense in Depth

Internet Cloud FW Host Firewall Service

UFW - unkompliziert & effektiv

Status priifen:

sudo ufw status verbose

Default-Policy setzen:

sudo ufw default deny incoming
sudo ufw default allow outgoing

SSH absichern (Pflichtregel)

sudo ufw allow OpenSSH

Oder explizit:

sudo ufw allow 22/tcp

Firewall aktivieren (bewusst!)

sudo ufw enable

Warnung lesen - bestatigen

UFW Regeln anzeigen

sudo ufw status numbered

Regel loschen:

sudo ufw delete <NUMMER>

Typische Firewall-Fallen

X SSH vergessen erlaubt
X ,allow all“ aus Bequemlichkeit
X Ports offen , fiir spater®

Merksatz:

Was nicht gebraucht wird, bleibt zu.

Mini-Demo: Blockierte Verbindung

Test (von extern):

s HTTP-Port nicht erreichbar
» SSH erreichbar

. So soll es sein.

= kann getestet werden mittels netcat oder telnet

= alternativ auch iiber https://shodan.io

https://shodan.io/

UFW + Docker (wichtig!)

Problem:
= Docker umgeht UFW teilweise
Losung (nur erwahnen):

= Docker-Userland-Proxy

m spater: Reverse Proxy + nur 80/443

< Wir fixen das konzeptionell morgen

Checkpoint & Firewall

v/ Default deny incoming
v/ SSH erlaubt

v/ keine unnotigen Ports offen

v/ Verstindnis fiir Defense in Depth

Tagesstand jetzt

Linux Host

Updates & Wartung

User & SSH Hardening

R

Fundament steht.

Jetzt diirfen wir Container darauf loslassen.

Firewall

Ausblick nachster Abschnitt

Docker verstehen, ohne Magie

= Images vs Container
= docker run
= Ports bewusst 6ffnen (noch!)

= Container sehen & stoppen

<~ weiter mit Abschnitt 5: Docker Basics

Abschnitt 5
Docker Basics — Container ohne Magie

Ziel:
Du verstehst was Docker wirklich tut,

kannst Container starten, stoppen, beobachten

und erkennst warum Port-Exposure gefahrlich ist.

Warum wir Docker einsetzen

= reproduzierbare Umgebungen
= gleiche Software iiberall
= schneller Start / schneller Stop

= saubere Trennung von Diensten

Docker ist kein Ersatz fiir Security,
sondern ein Werkzeug zur Ordnung.

Mental Model: Was ist ein Container?

Linux Host

Docker Engine

Container = Prozess
lauft auf dem Host-Kernel
kein eigenes Betriebssystem

Das nennt man Kernal-Namespaces!

Container

——Process—»

App

Image vs Container

Image ——docker run—» Container

—stop—»

Image = Bauplan
Container = laufende Instanz
Image bleibt unveriandert

stopped container

—rm—>

deleted

Docker installieren (falls noch nicht passiert)

curl -fsSL https://get.docker.com | sh
sudo usermod -aG docker dihuser

< Danach neu einloggen

Test:

docker version
docker info

Dein erster Container (sichtbar & bewusst)

docker run -d -p 8080:80 nginx

Was passiert hier?

= -d - detached
= -p 8080:80 -> Port Mapping

= nginx - Image

Container live beobachten

docker ps

Browser:

http://SERVER-IP:8080

Funktioniert das bei euch?

Wie schaut es bei unsere ufw firewall aus? &/
. mit allow 8080 funktioniert es jetzt.

Was jedoch noch fehlt ist verschliisselte Kommunikation zum Webserver.

Container Logs & Prozesse

docker logs <container-id>
docker top <container-id>

Vergleich:
ps aux | grep nginx

Container = Prozess mit Grenzen.

Container stoppen & loschen

docker stop <container-id>
docker rm <container-id>

Image bleibt:

docker images

Warum offene Ports ein Pro

Internet ——Port 8080—» Nginx Container X

Probleme:

= kein TLS
= kein Auth

= kein Rate Limit
= kein Uberblick

Merksatz:

Jeder offene Port ist ein Versprechen an Angreifer.

blem sind

Port Mapping bewusst variieren

docker run -d -p 127.0.0.1:8081:80 nginx

Test:

= von Server: funktioniert

= von aufRen: X blockiert

Wichtiger Aha-Moment

Container

80—

Docker Bridge

—38080—»

Port Exposure = Host-Entscheidung,
nicht Container-Entscheidung.

Host

—38080—»

Internet

Container ohne Ports starten

docker run -d --name internal-nginx nginx

docker ps

Liuft, aber nicht erreichbar

Container inspizieren (Gold!)

docker inspect internal-nginx | less

Achte auf:

= NetworkSettings
= Mounts

= State

Typische Anfangerfehler

X alles mit Ports starten
X Container als VM behandeln
X Configs im Container dndern X Logs ignorieren

< Alles fixen wir strukturiert.

Checkpoint & Abschnitt 5

v/ Image vs Container verstanden

Vv Container starten & stoppen

Vv Logs lesen

v/ Port-Exposure bewusst eingesetzt

v Container # VM

Vorbereitung auf den nachsten Schritt

Was jetzt noch weh tut:

= viele docker run Befehle

®» nichts versioniert
= kein Uberblick

&J Losung:
Docker Compose

< weiter mit Abschnitt 6: Docker Networking & Compose

Abschnitt 6
Docker Networking & Docker Compose

Ziel:
Du verstehst wie Container miteinander sprechen,
warum Namen wichtiger sind als IPs,

und warum Docker Compose Pflicht ist.

Warum Networking jetzt kommt

Bis jetzt:

= Container einzeln
= Ports manuell

= Chaos wachst
Ab jetzt:

= strukturierte Netze
= Services sprechen intern

= Host bleibt sauber

Docker Networking — das Grundprinzip

| Bridge Network

Container A Container B

— —
Name-based DNS

Wichtig:

= Docker bringt internes DNS
= Container finden sich tiber Namen

= [Pssind egal

Docker Default Bridge (kurz)

docker network ls
docker network inspect bridge

Probleme:

= allesin einem Netz
= keine Trennung

= schlecht fiir Ubersicht

Eigene Netze sind besser.

Eigenes Netzwerk erstellen

docker network create lab-net

Check:

docker network ls
docker network inspect lab-net

Container im selben Netzwerk starten

docker run -d --name web --network lab-net nginx
docker run --rm --network lab-net alpine ping web

Aha-Moment:

= web ist DNS-Name
= keine IP notig

= kein Port-Mapping

Warum das wichtig ist (ohne Grafik)

Was hier gerade passiert ist:

= Docker stellt internes DNS bereit
= Container finden sich tiber Namen
» Kommunikation bleibt innerhalb des Netzwerks

= Nichts davon ist von aufSen erreichbar
Merksatz:

Interne Kommunikation # Exponierung

Typischer Anfangerfehler (bitte merken)

X IP-Adressen hardcoden
X localhost im Container nutzen
X Ports fiir interne Kommunikation 6ffnen

Merksatz:

Container reden iiber Namen, nicht iiber Ports.

Warum docker run jetzt an seine Grenzen kommt

Beispiel:

docker run ...
docker run ...
docker run ...

Probleme:

= nicht reproduzierbar
= nicht versionierbar

= nicht teamfahig

Compose 10st das.

Docker Compose = Infrastruktur-Code

/—> Networks

docker-compose.yml Services

\> Volumes

Ein File beschreibt:

= was lauft
® wie es vernetzt ist

= wie es gestartet wird

Erste docker-compose.yml (bewusst simpel)

services:
web:
image: nginx
container_name: web
networks:
- lab-net

networks:
Lab-net:
external: true

Starten:

docker compose up -d

Was Compose automatisch macht

= Container-Namen
= internes DNS
= Start-Reihenfolge

= sauberes Stoppen

docker compose ps
docker compose logs

Interne Kommunikation testen

docker compose exec web nginx -v

Oder:

docker run --rm --network lab-net alpine ping web

Ports jetzt bewusst NICHT setzen

Warum?

Internet ———X

Container

Reverse Proxy —v

Ports kommen zentral, nicht pro App
Das ist die Briicke zu Traefik (Tag 2)

Volumes kurz angerissen (Preview)

volumes:
data:

Daten leben aufSerhalb des Containers
Container darf sterben
Daten bleiben

<~ Morgen wichtig fiir Apps & Backups

Typische Fehler & Debugging

X Container sehen sich nicht
- gleiches Network?

XK Name funktioniert nicht
-> docker inspect

XK Compose startet nicht
-> docker compose config

Checkpoint 8 Abschnitt 6

v/ Docker Networking verstanden

v/ Container-Namen als DNS

v/ Compose als Standard

v/ Keine unnétigen Ports offen

Endzustand Tag 1 — Gesamtbild

Linux Host

/

i

Updates & Firewall

Users & SSH

Docker Engine

< Fundament steht.

Docker Networks

Container via Compose

Abschluss Tag 1

Heute gelernt:

= Linux sicher bedienen
m Zugriffe kontrollieren
= Docker verstehen

» [nfrastruktur strukturieren

Morgen: &d Reverse Proxy
& HTTPS & Cloudflare
&J Applikationen

&4 Monitoring & Backup

. Bitte Server nicht lIoschen

Tag 2 — Applikationen & Betrieb

Secure Infrastructure Lab - Lakeside Park - CSAW x HoliSec

Heute machen wir den Server produktiv

= Services erreichbar machen
= Angriffsflache klein halten
= Struktur statt Port-Chaos

Ruckblick: Wo stehen wir?

Gestern aufgebaut:

=/ sicherer Linux-Host
v/ SSH Hardening & Firewall
v/ Docker & Docker Compose

/ interne Docker-Netzwerke

v keine offenen Ports aufSer SSH

< Genau das brauchen wir jetzt.

Zielbild fir heute

Am Ende von Tag 2:

= Ein zentraler Einstiegspunkt (Reverse Proxy)
= HTTPS iiberall

= Applikationen nur intern

= Monitoring & Backups als Basis

= Klarheit: Was ist produktionsreif, was nicht?

Warum wir heute nichts ,,einfach 6ffnen”

Typischer Anfanger-Reflex:

docker run -p 3000:3000 app
docker run -p 8080:8080 app
docker run -p 9000:9000 app

Fihlt sich schnell an - ist aber technische Schulden.

Das Port-Chaos-Problem probeme:

= keine Ubersicht
= kein TLS
= jede App selbst verantwortlich

3000— App1 X

= Firewall-Regeln explodieren

Internet —8080—» App 2 X

9000—> App 3 X

Security-Sicht: Jeder Port ist Risiko

Merksatz:

[Ein offener Port ist ein Versprechen an das Internet.
Jeder Port bedeutet:

= neue Angriffsflache
= neue CVEs
= neue Logs

= neue Wartung

Die Losung: Reverse Proxy (Grundidee)

intern—» App 1

Internet —443—> Reverse Proxy

intern—» App 2

Nur eine Stelle:

= spricht mit dem Internet
= macht TLS

= macht Routing

Was ein Reverse Proxy NICHT ist

X keine Firewall
X kein Auth-System
X kein IDS/IPS

Erist:
m Verkehrsverteiler

= TLS-Endpunkt
= Kontrollpunkt

Warum Traefik (und nicht Nginx)

Kurzer Reality-Check:
Nginx:
= statische Configs

= Reloads

= viel Handarbeit
Traefik:

= Docker-native
= liest Labels
= dynamisch

= perfekt fiir Compose

< Fiir Self-Hosting & KMUs klarer Sieger.

Mental Model: Traefik hort Docker zu

Was Traefik macht:

= beobachtet laufende Container
» liest deren Labels

= erstellt daraus automatisch Routing-Regeln
Wichtig:

Kein Reload.
Keine statischen Configs.
Labels = Wahrheit.

Wichtige Design-Entscheidung (bitte merken)

Apps haben keine Ports nach aufSen.

= keine ports: bei Apps
= Kkeine Firewall-Regeln pro App
= alles geht iiber Traefik

Das ist der Grund, warum Tag 1 so wichtig war.

Hands-on-Vorbereitung (noch nichts starten!)

Bevor wir irgendwas deployen, priifen wir:

docker ps
docker network ls

Wir erwarten:

= Docker lauft
» kein Traefik
= keine Apps exposed

Checkpoint & Abschnitt 1

Wenn das passt, bist du bereit:

= / du verstehst das Port-Problem
= / dukennst die Reverse-Proxy-Idee
=/ duweifdt, warum wir Traefik einsetzen

= «/ dein System ist noch ,sauber®

Nachster Schritt

Jetzt bauen wir Traefik minimal & bewusst:

eigenes Docker-Netzwerk
nur Port 80/443

noch kein HTTPS
Dashboard nur lokal

<~ weiter mit Abschnitt 2: Traefik Core Setup

Abschnitt 2
Traefik Core Setup (ohne TLS)

Ziel:
Traefik lauft, hort Docker zu

und ist der einzige Einstiegspunkt nach aufSen.
Noch:

» X kein HTTPS
= X keine echten Apps
= X kein Cloudflare

Design-Entscheidung (bitte merken)

Traefik ist Infrastruktur, keine App

Das heifSt:

= eigener Compose-Stack

= eigenes Docker-Netzwerk

= moglichst wenig Abhangigkeiten
= stabil & boring

Mental Model: Traefik als Torwachter

Internet —80—» Traefik ——intern—» Docker Services

Alles, was nicht Traefik ist:

= Dbleibt intern
» bekommt keine Ports

= spricht nur iber Docker-Netzwerke

Vorbereitung: Eigenes Proxy-Netzwerk

Warum ein eigenes Netzwerk?

= saubere Trennung

= Apps konnen mehrere Netze haben

= spater wichtig fiir Security

docker network create proxy

Check:

docker network ls

Projektstruktur fur Traefik

Wir arbeiten bewusst strukturiert:

mkdir -p ~/workshop/compose/traefik
cd ~/workshop/compose/traefik

touch docker-compose.yml

Traefik Minimal-Konfiguration (Teil 1)

services:
traefik:

image: traefik:v3.0

container_name: traefik

command:
- "--providers.docker=true"
- "--providers.docker.exposedbydefault=false"
- "--entrypoints.web.address=:80"

ports:
- ""80:80"

volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro

networks:
- proxy

networks:
proxy:
external: true

Wichtige Flags — warum sie existieren

--providers.docker=true

< Traefik liest Docker

--providers.docker.exposedbydefault=false

<~ Sicherheitskritisch! Container sind nicht automatisch offentlich

--entrypoints.web.address=:80

< Ein Einstiegspunkt, kein Chaos

Docker Socket — kritisch, aber notig

- /var/run/docker.sock:/var/run/docker.sock:ro

Was bedeutet das?

= Traefik kann Container sehen

= aber nicht verandern (read-only)

Merksatz:

Wer Docker Socket liest, vertraut Traefik.

Traefik starten

docker compose up -d

Check:

docker ps

Du solltest sehen:

» traefik lauft

» kein anderer Service exposed

Test: Tut Traefik irgendwas?

curl http://localhost

Erwartung:
= 404 oder leere Antwort

< Das ist korrekt.
Traefik routet erst, wenn wir es sagen.

Traefik Dashboard — bewusst nur lokal

Jetzt nur zu Lernzwecken:

command:
- "--api.insecure=true
- ""--api.dashboard=true

Port hinzufiigen:

ports:
- ""80:80
- '"8080:8080

Restart:

docker compose up -d

Dashboard priifen

Browser:
http://SERVER-IP:8080
Was sehen wir?

= EntryPoints
= Router (leer)

= Services (leer)

< Genau so soll es jetzt sein.

Security-Warnung

Traefik Dashboard darf NIE 6ffentlich sein

Im Workshop:

= ok
= zum Lernen

= temporar
Produktiv:

= Dashboard nur intern

= oder gar nicht

Typische Fehler an dieser Stelle

X Docker Socket nicht gemountet
X falsches Netzwerk

X exposedbydefault=true

X Ports bei Apps 6ffnen

Debug:

docker logs traefik

Checkpoint & Abschnitt 2

Wenn das passt:

» / Traefik lauft stabil

v/ hort Docker zu

v/ nur Port 80 offen

v/ Dashboard sichtbar

v/ noch keine Apps exposed

Mentale Pause (wichtig!)

Bis hierher haben wir:

= keine App
= kein HTTPS
= kein DNS

Und trotzdem: &J das wichtigste Infrastruktur-Element steht

Nachster Schritt

Jetzt wird Traefik niitzlich:

&4 Routing zu einer Test-App
&J Labels verstehen
&J ,Wie kommt Traffic zur App?“

<~ weiter mit Abschnitt 3: Erste App iliber Traefik routen

Abschnitt 3
Erste App uber Traefik routen

Ziel:
Eine interne App ist iiber Traefik erreichbar —

ohne Ports, ohne TLS, nur mit Labels.

Was wir jetzt bauen

Browser ——HTTP :80—» Traefik

——intern—»

App lauft nur intern
Traefik entscheidet
Routing ist explizit

Test-App

Wichtige Regel (nochmal!)

[Apps bekommen keine ports:
Wenn du ports: bei Apps siehst:

= falsches Setup
= sofort stoppen

= neu denken

Wahl der Test-App

Wir nehmen:

» klein
m stateless

m sofort sichtbar

< traefik/whoami
Warum?
= zeigt Request-Infos

= perfekt zum Lernen

= kein Setup notig

Projektstruktur fiir Test-App

mkdir -p ~/workshop/compose/apps
cd ~/workshop/compose/apps

touch whoami.yml

whoami — Minimal Compose File

services:
whoami :
image: traefik/whoami:latest
container_name: whoami
networks:
- proxy
Labels:

- "traefik.enable=true"
- "traefik.http.routers.whoami.rule=Host(whoami.localhost)"

- "traefik.http.routers.whoami.entrypoints=web"

networks:
proxy:
external: true

Labels — langsam & bewusst erklart

traefik.enable=true

< Traefik darf diesen Container sehen

routers.whoami.rule=Host(whoami.localhost)
<~ Routing-Regel (Host-Header)
entrypoints=web

< Port 80

App starten

docker compose -f whoami.yml up -d

Check:

docker ps

DNS vorbereiten (lokal)

Da wir noch kein echtes DNS nutzen:

< auf deinem Laptop:
SERVER-IP whoami.localhost
Datei:

= Linux/macOS: /etc/hosts

= Windows: C:\Windows\System32\drivers\etc\hosts

Test im Browser

http://whoami.localhost

Erwartung:

= Seite mit Request-Infos
= Hostname sichtbar

» Container-Name sichtbar

& Das ist der Aha-Moment - Es geht um die http header!

Was gerade passiert ist

Browser Traefik whoami

HTTP Request (Host Header)

Forward Request

Response

Response

Browser Traefik whoami

Keine Ports - Keine IPs - Nur Namen & Regeln

Traefik Dashboard prufen

http://SERVER-IP:8080

Was ist neu?

= Router: whoami
= Service: whoami

= EntryPoint: web

< Dashboard ist Debug-Tool, kein Feature

Typische Fehler & Fixes

X 404

= Hostname stimmt nicht
X App nicht sichtbar

= richtiges Network?

X Traefik reagiert nicht

= Labels korrekt?

Debug:

docker logs traefik

Wichtiges Learning (bitte merken)

Routing passiert iiber Labels, nicht Ports.

Alles Weitere (TLS, Auth, Rate Limits):

= sind Erweiterungen

» bauen darauf auf

Cleanup (Disziplin!)

docker compose -f whoami.yml down

Warum?

= sauberes System
= keine Altlasten

= produktionsnahes Arbeiten

Checkpoint 8 Abschnitt 3

v/ App lduft ohne Ports

v/ Routing per Hostname
V/ Traefik Dashboard verstanden
/ Traffic-Flow klar

Nachster Schritt

Jetzt kommt die nachste Schicht:

& HTTPS

&J echte Domains

&J Cloudflare

&J Zertifikate automatisch

< weiter mit Abschnitt 4: HTTPS & Cloudflare (DNS Challenge)

Warum wir jetzt umbauen

Bis jetzt:

= einzelne Compose-Files
= Lern-Setups

= schnelle Experimente
Ab jetzt:

= produktionsnahe Struktur
= klare Verantwortlichkeiten

s wiederauffindbar in 6 Monaten
Merksatz:

Ordnerstruktur ist Teil der Security.

Mental Model: Ordner = Verantwortung

= jede Komponente hat ihren Platz
= Infrastruktur # Applikationen

= Daten leben getrennt von Code
Ziel:

Ich weifd sofort, wo ich etwas dndern oder sichern muss.

Umbau der Grundstruktur

/opt |home/docker

I— traefik/

| |— docker-compose.yml
| }— config/
| | |— conf.d/*extra konfigs*

| | L— traefik.yml

| L— data/

| L *spiter fiir Zertifikate*
— apps/

| I— whoami/

| | |— docker-compose.yml

| L data/

|

|

|

|

|

|

|

|

|
|
I— applicationl/
| |— docker-compose.yml
| L data/
|
L application2/
|— docker-compose.yml
L data/
L backups/
L data/
L databases/

Slide 5 — Erklarung: Was liegt wo (kurz & klar)

Was liegt wo - und warum

traefik/

- zentrale Infrastruktur
- einziger Einstiegspunkt
- Zertifikate & Routing

apps/

- jede App fir sich
- eigenes Compose

- eigene Daten

backups/
- bewusst sichtbar
- kein ,vergessenes Feature®

Warum sich das spater auszahlt

= Backups klar definierbar
= einfache Migration auf neue Server
= weniger Angst vor Updates

= bessere Ubergabe an andere Admins
Das ist:

= sauber

= professionell

replizierbar

~ genau das, was Infrastruktur sein soll

{

Neues Docker Compose

services:
traefik:

image: traefik:latest

container_name: traefik

ports:
- "80:80" #expose http
- "8080:8080" #expose dashboard

volumes:
- /var/run/docker.sock:/var/run/docker. sock
- ./config/traefik.yaml:/etc/traefik/traefik.yaml:ro #read access to traefik config
- ./config/conf.d/:/etc/traefik/conf.d/:ro # additional traefik configurations

networks:
- proxy
restart: unless-stopped
networks:
proxy:
external: true

Traefik Config

global:
checkNewVersion: false
sendAnonymousUsage: false

log:
Level : DEBUG

api:
dashboard: true
insecure: true

entryPoints:
web:
address: :80

providers:
docker:
endpoint: "unix:///var/run/docker.sock
network: proxy
exposedByDefault: false

https://doc.traefik.io/traefik/

https://doc.traefik.io/traefik/

Abschnitt 4
HTTPS & Cloudflare — sauber und reproduzierbar

Ziel:
Traefik stellt automatisch giiltige TLS-Zertifikate aus

- ohne offene Challenge-Ports

- ohne App-spezifische TLS-Configs.

Warum HTTPS nicht optional ist

Ohne HTTPS:

= Passworter im Klartext
= Session Hijacking
= Browser-Warnungen

» kein Vertrauen

Merksatz:

Alles, was iiber das Internet geht, ist TLS-terminiert.

Klassischer HTTPS-Fail

443—»

App mit TLS X

| (bitte nicht!)

Internet

443—>»

Andere App X

Probleme:

= Zertifikate pro App
= unklare Zustandigkeiten
= Ablauf vergessen

= Downtime

Zielbild: Zentrales TLS

Internet HTTPS

Nur Traefik spricht TLS
Apps bleiben simpel
Zertifikate automatisiert

Traefik TLS

——HTTP intern—»

Apps

Rolle von Cloudflare (klar abgrenzen)

Cloudflare ist:

= DNS
= DDoS-Schutz
= Proxy (optional)

Cloudflare ist nicht:

m deine Firewall

= dein TLS-Endpunkt (bei Full Strict)

<~ Wir nutzen Cloudflare fiir DNS & API-Zugriff

Warum DNS-Challenge?

Traefik ——DNS APl—» Cloudflare

Vorteile:

= kein Port 80 notig

= Firewall-freundlich

= Wildcard-Zertifikate moglich

» perfekt fiir Server ohne Public HTTP

Let's Encrypt

Vorbereitung: Domain & DNS

Voraussetzung:

= Domain bei Cloudflare

= Nameserver zeigen auf Cloudflare

m Zugriff auf Zone

<~ Noch keine Records notig

Cloudtlare API Token erstellen

Benotigte Rechte:

= Zone - DNS - Edit

m Zone - Zone - Read
Wichtig:

= Scoped Token
= kein Global API Key

. Token niemals committen

Token sicher speichern (Server)

vim ./traefik/.env

CF_DNS_API_TOKEN=XXXXXXXXXXXXXXXX

chmod 600 ./traefik/.env

Wichtig! Secrets sollen nicht geteilt werden und auch nicht in einem Source Code Management aufpoppen.

Warum wir Secrets trennen

Merksatz:

Secrets gehoren nicht ins Compose-File.
Vorteile:

» kein Leak im Git
= klarer Ort

= einfacher Wechsel

Traefik fiir TLS vorbereiten

entryPoints:
web:
address: :80
http:
redirections:
entryPoint:
to: websecure
scheme: https
websecure:
address: :443

certificatesResolvers:
cloudflare:
acme:
email: "christian.gubesch@gmail .com”
storage: /var/traefik/certs/cloudflare-acme.json
caServer: '"https://acme-v@2.api.letsencrypt.org/directory"
dnsChallenge:
provider: cloudflare
resolvers:
- "1.1.1.1:53"
- "8.8.8.8:53"

Optional TLS Config

vim .traefik/config/conf.d/tls.yaml

tls:

options:

default:
minVersion: VersionTLS12

sniStrict: true

curvePreferences:

CurveP256
CurveP384
CurveP521

cipherSuites:

TLS_ECDHE_ECDSA_WITH_AES_128 GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_ GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_ SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH AES_128 GCM_SHA256
TLS_ECDHE_RSA_WITH_CHACHA20 POLY1305

Docker Compose anpassen

services:
traefik:
image: traefik:latest
container_name: traefik
ports:
- ""80:80"
- "443:443" #expose https
- "8080:8080"
environment:
- CF_DNS_APT_TOKEN=${CF_DNS_APT_ TOKEN} #Cloudflare API Token with access to edit DNS entries for certain domains
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- ./config/traefik.yaml:/etc/traefik/traefik.yaml:ro
- ./config/conf.d/:/etc/traefik/conf.d/:ro
- ./data/certs:/var/traefik/certs:rw #certificate store -> this should be backuped
networks:
- proxy
restart: unless-stopped
networks:
proxy:
external: true

Traefik neu starten

docker compose down
docker compose up -d

Logs beobachten:

docker logs -f traefik

<~ Noch keine Zertifikate — das ist korrekt.

HTTPS passiert erst bei Routing!

Wichtig:

Traefik holt Zertifikate nur, wenn ein Router TLS verlangt.

Das machen wir gleich mit einer Test-App

Test-App erneut — jetzt mit TLS

Wir nehmen wieder whoami, aber HTTPS.

Labels:

"traefik.enable=true"

"traefik.http.routers.whoami.rule=Host(whoami.example.com")"
"traefik.http.routers.whoami.entrypoints=websecure"
"traefik.http.routers.whoami.tls.certresolver=cloudflare"

DNS Record setzen

In Cloudflare:

= Type: A

= Name: whoami

= [P: SERVER-IP

= Proxy: DNS only (graue Wolke)

. Fiir den Workshop absichtlich kein Proxy

Optional ware es auch moglich einen wildcard DNS record zu setzen

Cooles Zusatzfeature

Wenn man in Cloudflare keine manuellen DNS Records setzten mag kann man:

m Lokalen DNS Server verwenden und Record setzten
= In Hosts File DNS Eintrag hinzufiigen

= DNS Challange funktioniert auch mit Sub-Sub Domainen

. Wichtig ist eigentlich nur, dass der HTTP Header stimmt!
Fiir uns heifSt das eigentlich jede Applikation bekommt eigene Subdomain.

Es wire auch moglich /Pfade zu verwenden ohne Subdomainen

Test im Browser

https://whoami.example.com

Erwartung:

= giltiges Zertifikat
= Let’s Encrypt als Issuer

= Seite 1adt ohne Warnung

& HTTPS steht.

Was gerade passiert ist

Traefik Cloudflare DNS Let's Encrypt

create TXT record

>
DNS proof
>
certificate
4_ ..
Traefik Cloudflare DNS Let's Encrypt

Kein HTTP-Challenge.
Kein Port-Freigaben.

Typische Fehler & Debugging

X Zertifikat kommt nicht

= DNS korrekt?
= Token-Rechte?

Logs:
docker logs traefik | grep acme

X Permission denied auf acme.json

= chmod 600

Security-Hinweis (wichtig!)

Zertifikate sind Secrets:

= acme.json niemals offentlich

® niemals ins Git

Checkpoint & Abschnitt 4

v/ Cloudflare DNS verstanden
v/ DNS-Challenge erklart

v Traefik stellt Zertifikate aus
v/ HTTPS funktioniert

v Apps bleiben TLS-frei

Nachster Schritt

Jetzt wird es real:

&J echte Applikationen
&J Volumes & Daten
&J produktionsnahe Compose-Files

<~ weiter mit Abschnitt 5: Erste produktive Apps

Abschnitt 5
Produktive Applikationen — sauber & wartbar

Ziel:
Reale Services laufen stabil, HTTPS-gesichert
und sind wartbar & backupfihig.

Heute:

=/ Uptime Kuma (Monitoring)
= / Vaultwarden (Passwortmanager)

= (optional) Stirling PDF als Demo

Vor dem Start: Grundregeln fur Apps

Bitte merken:

X keine ports: bei Apps
= / immer eigenes Volume

v/ Konfig iiber ENV, nicht im Container

v/ ein Service = ein Compose-Block

v/ klare Namen

Merksatz:

Container sind Wegwerfware - Daten nicht.

Struktur fur produktive Apps

Pro App:

apps/

I— uptime-kuma/

| |— docker-compose.yml
| L data/

|— vaultwarden/

| I— docker-compose.yml
| L— data/

Ein Repo, viele kleine Stacks

Teil A
Uptime Kuma - Monitoring als erstes

Warum wir mit Monitoring starten

Wenn Monitoring fehlt, merkst du Fehler zu spat
Monitoring ist kein Luxus
Erste App = einfach & sichtbar

Uptime Kuma - Compose File (1)

mkdir uptime-kuma
cd uptime-kuma
vim docker-compose.yml

services:
uptime-kuma:

image: louislam/uptime-kuma:latest

container_name: uptime-kuma

restart: unless-stopped

volumes:
- ./data:/app/data

networks:
- proxy

Labels:
- "traefik.enable=true"
- "traefik.http.routers.uptime.rule=Host(uptime.example.com)"
- "traefik.http.routers.uptime.entrypoints=websecure"
- "traefik.http.routers.uptime.tls=true"
- "traefik.http.routers.uptime.tls.certresolver=cloudflare"

networks:
proxy:
external: true

Uptime Kuma — Compose File (2)

services:
uptime-kuma:
image: louislam/uptime-kuma:latest
container_name: uptime-kuma
restart: unless-stopped
volumes:
- uptimekuma-data:/app/data #use docker volume
- /var/run/docker.sock:/var/run/docker.sock # container monitoring
networks:
- proxy
Labels:
- "traefik.enable=true"
- "traefik.http.routers.uptime.rule=Host(uptime.example.com)"
- "traefik.http.routers.uptime.entrypoints=websecure"
- "traefik.http.routers.uptime.tls=true"
- "traefik.http.routers.uptime.tls.certresolver=cloudflare"

volumes:
uptimekuma-data:
driver: local

networks:
proxy:
external: true

Warum diese Punkte wichtig sind

restart: unless-stopped

< Server reboot # App down

volumes:
- ./data:/app/data
volumes:
- uptimekuma-data:/app/data

< Daten tliberleben Container - Optional kann man auch mit Docker Volumes arbeiten!
Llabels:

<~ Routing zentral, nicht im Code

App starten & prifen

docker compose up -d
docker ps

Browser:

https://uptime.example.com

& Erste produktive App steht.

Permissions-Check (wichtig!)

docker inspect uptime-kuma | grep -A5 Mounts

Volume gehort Docker:

= nicht chmod 777

= Docker regelt Ownership

Merksatz:

Volumes nicht manuell anfassen, auffer du weif$t warum.

Erste sinnvolle Checks anlegen

In Uptime Kuma:

= HTTPS-Check auf eigene Domain
m Zertifikatsablauf priifen
= Docker Container Uberwachen

= gpiter: externe Dienste

Checkpoint 4 Uptime Kuma

= App lauft stabil
= / HTTPS funktioniert
= / Daten persistent

= / kein Port offen

Teil B
Vaultwarden - Passwortmanager (Core Setup)

Warum Vaultwarden heikel ist
= gpeichert Secrets

= [nternet-exponiert

= braucht saubere Defaults

<~ Wir machen nur Basis, kein Endausbau.

Vaultwarden — Compose File

services:
vaultwarden:
image: vaultwarden/server:latest
container_name: vaultwarden
restart: unless-stopped
environment:
- SIGNUPS_ALLOWED = {$SIGNUPS_ALLOWED} #manual account creation
- ADMIN_TOKEN={VAULTWARDEN_ADMIN_TOKEN} #access admin panel
- DOMAIN={$DOMAIN} #domain of application
- WEBSOCKET_ENABLED={$WEBSOCKET_ENABLED} #smoother application handling
volumes:
- ./vaultwarden:/data
networks:
- proxy
Labels:
- "traefik.enable=true"
- "traefik.http.routers.vault.rule=Host(vault.example.com)"
- "traefik.http.routers.vault.entrypoints=websecure"
- "traefik.http.routers.vault.tls=true"
- "traefik.http.routers.vault.tls.certresolver=cloudflare"
networks:
proxy:
external: true

Vaultwarden starten

docker compose up -d
docker ps

Browser:

https://vault.example.com

Account manuell anlegen

Vaultwarden

Nicht jetzt, aber merken:

Admin Token

2FA
Backup-Strategie
regelmafSige Updates

: Minimal-Hardening (Hinweis)

Checkpoint 8 Vaultwarden

v HTTPS aktiv

vV Registrierungen kontrolliert

v/ Daten persistent

v keine offenen Ports

Typische Fehler bei Apps

X App startet nicht

= Logs priifen:

docker compose logs

X HTTPS geht nicht
= Labels / DNS priifen
X Daten weg

= Volume vergessen

Schematischer Aufbau

Internet

Cloudflare Proxy

Server/Traefik

-

Uptime Kuma

™

.

Vaultwarden

!

Volumes/Filemounts

Checkpoint & Abschnitt 5 (gesamt)

= / mindestens eine produktive App
= / sauberes Compose

v/ TLS zentral

v/ Volumes korrekt

Vv Struktur verstiandlich

Nachster Schritt

Jetzt kiimmern wir uns um:

&4 Backups (Duplicati)
&J Restore-Denken
&4 Monitoring sinnvoll erweitern

< weiter mit Abschnitt 6: Backup & Betrieb (Basics)

Abschnitt 6
Backup & Betrieb — Basics, aber richtig

Ziel:
Daten sind gesichert, Ausfille werden bemerkt

und der Betrieb ist vorhersehbar, nicht reaktiv.

Die wichtigste Wahrheit zuerst

Backup ohne Restore-Test ist kein Backup.
Viele Systeme:

= sichern fleifSig
= testen nie

» fallen im Ernstfall durch

Nicht sichern: Was wir wirklich sichern?

= [mages
Container —X—» NICHT sichern

= laufende Container

Sichern:

= Volumes Volumes

= Konfigs

= Compose-Files

m Secrets)
Compose Files —V Backup

Configs / Secrets —V

Backup-Ziel definieren (realistisch)

Fragen:

= Wie viel Datenverlust ist ok? (RPO)
= Wie lange darf Restore dauern? (RTO)
= Wo liegen die Backups?

< Fur KMUs oft:

= taglich
m offsite

m gqutomatisiert

Teil A
Duplicati — pragmatische Backup-Losung

Warum Duplicati?

= Open Source
» Containerisiert
= Verschliisselung

= viele Backends

Nicht perfekt — aber praxisnah.

Duplicati — Grundsetup

services:

duplicati:

image: duplicati/duplicati:latest

container_name: duplicati
restart: unless-stopped
volumes:

./data:/data

- /home/deploy/workshop:/source:ro
- /home/deploy/backups: /backups
networks:

- proxy
Labels:

"traefik.enable=true"
"traefik.http.routers
"traefik.http.routers
"traefik.http.routers
"traefik.http.routers

networks:

proxy:

external: true

.duplicati.rule=Host(backup.example.com)"
.duplicati.entrypoints=websecure"
.duplicati.tls=true"
.duplicati.tls.certresolver=cloudflare"”

Warum diese Mounts?

/source:ro

<~ Nur lesen, nie schreiben

/backups

<~ Lokales Ziel (Demo)
Produktiv:

= S3
= Storage Box

m Offsite Location

Duplicati starten

docker compose up -d
docker ps

Browser:

https://backup.example.com

Backup-Job anlegen (Demo)

In der UI:

= Source: /source

= Destination: /backups

= Verschliisselung: immer
= Schedule: taglich

= Retention: z.B. 30 Tage

. Passwort sicher dokumentieren!

Restore-Denken (Pflicht!)

Gedankenexperiment:

= Volume geloscht

= Server neu

Was brauchst du?

Antwort:

= Compose-Files
= Volumes

m Secrets

<~ Mindestens einmal Restore testen!

Teil B
Monitoring sinnvoll nutzen

Monitoring

Ziel:

= wissen, dass etwas kaputt ist

= nicht alles messen

Was ist mit Security Monitoring?

= Biichse der Pandora
» Patches of Server
= Backups

= Applications/Images

Sinnvolle Checks mit Uptime Kuma
Checks:

= HTTPS Endpoint
» Zertifikatsablauf
» Traefik erreichbar

= App erreichbar

Traefik

Uptime Kuma

T
\b Apps

Typische Monitoring-Fehler

X zu viele Checks
X niemand schaut rein
X keine Alerts

Merksatz:

Ein Alarm ohne Reaktion ist Larm.

Betrieb: Updates & Lifecycle

Fragen, die ihr euch stellen miisst:

= Wer macht Updates?
= Wann?
= Wie teste ich vorher?

= Was passiert bei Fehlern?

Uberlegung

Eigentlich muss Monitoring extern passieren nie am selben Server.
Idee: Eigener Server mit reinen Monitoring/Operations Task
Beispiel Stack:

= Uptime Kuma als Basis

= PatchMon als Patch Management
= Wazuh als Security Plattform

Demo PatchMon

https://patchmon.smesecurity.eu

https://patchmon.smesecurity.eu/

Container-Updates — ehrlich betrachtet

Optionen:

= manuell (docker compose pull)
= halbautomatisch

= vollautomatisch (Watchtower)

<~ Watchtower = Diskussion, kein Muss

Optional: Security Monitoring mittels trivy https://trivy.dev/

https://trivy.dev/

Logs & Debugging im Alltag

docker compose logs
docker logs traefik
journalctl -u docker

< Logs sind erste Hilfe, nicht letzter Ausweg.

Ausblick fiir Security und Operations
= Authentik (SSO)

= CrowdSec

= Rate Limiting

= Read-only Container
= IDS/SIEM

= CI/CD

= Ansible/GitOps

Warum?

Erst Betrieb im Griff, dann Ausbau.

Wann DIY endet

DIY gut fiir:

= kleine Teams
= Lernphasen

» {iberschaubare Risiken
Managed sinnvoll bei:

= SLA
= Compliance

= wenig Personal
= hoher Schaden bei Ausfall

Abschluss — Takeaways

= [Infrastruktur ist Systemdenken
= Security ist Prozess, kein Tool
= Weniger ist oft mehr

= Verstehen schldgt Kopieren

ATra

Danke & offene Fragen ¢

Feedback via Menti: https://menti.com

Was nehmt ihr mit?
Was wiirdet ihr produktiv so machen?
Wo wiirdet ihr Hilfe holen?

CSAW x HoliSec
Lakeside Science & Technology Park

https://menti.com/

Advanced Outlook

Wenn das Fundament steht

Diese Themen sind bewusster Ausblick

<~ keine Konfiguration

<~ keine Hands-on-Pflicht

<~ Fokus: Verstandnis & Entscheidungsfahigkeit

Warum Advanced erst spater kommt

Merksatz:

Komplexitat ist kein Feature.

Advanced-Setups machen nur Sinn, wenn:

m Betrieb stabil lauft
= Basics automatisiert sind

» Verantwortlichkeiten klar sind

Entscheidungsleitfaden

Frage dich immer:

= Welches Problem 10st das?
» Fir wen?

= Zu welchem Preis (Komplexitit)?

Abschnitt A
Identity & Access — Zentrale Anmeldung

Use Case: SSO / Identity Gateway (Authentik)

OK_—» Vaultwarden

User —HTTPS—» Cloudflare ——HTTPS—»{ Traefik —forwardAuth—» Authentik =~ —Nur Admins—» Uptime Kuma

OK™— Stirling PDF

Problem, das gelost wird:

= viele Apps, viele Logins
= Offboarding schwierig

= Kkeine zentrale Policy

Wann ist das sinnvoll?

= 5+ Apps

= mehrere User

= MFA / Rollen notig
= Auditing

Was Authentik NICHT ist

X kein Passwortmanager
X kein VPN
X kein Ersatz fiir App-Security

< Esist ein Zugangs-Gateway (IAM).

Abschnitt B
Zero Trust — Keine Apps offentlich

Use Case: Zero-Trust-Zugriff

User Zero Trust Access

——authenticated—»|

Problem, das gelost wird:

Admin-Uls im Internet
VPN unhandlich

Zugriff schwer steuerbar

Traefik internal

Admin Uls

T~

Internal Tools

Wann ist das sinnvoll?

= Admin-Oberflichen
= Kkleine, definierte Teams

= minimaler Internet-Footprint

Zero Trust # VPN

VPN:

= Netzwerkzugang

= oft ,alles oder nichts®
Zero Trust:

= Applikationszugang
= Identitatsbasiert

= fein granuliert

Abschnitt C
CrowdSec — Automatische Reaktion auf Angriffe

Use Case: CrowdSec + Traefik + SSH

Problem, das gelost wird:

= Bruteforce
= Scanner

= Credential Stuffing
Wann sinnvoll?

= oOffentliche Login-Seiten
= SSH offentlich erreichbar
= wiederkehrender Angriffs-Traffic

Abschnitt D
WAF & Rate Limiting — Schutz vor Abuse

Use Case: WAF vor Applil

Internet Cloudflare WAF

kationen

Traefik

Problem, das gelost wird:

» Bot-Traffic
= Formular-Abuse

= API-Missbrauch
Wann sinnvoll?

n Offentliche APIs
s Kontaktformulare

= Login-Endpunkte

Web Apps / APIs

WAF # Sicherheitsgarantie

= reduziert Noise
= verhindert triviale Angriffe

= ersetzt keine sichere App

Abschnitt E
Immutable / Read-only Container

Use Case: Read-only Container

Container FS: read-only

write blocked——»

No writes

Volumes for data

\ 4

tmp as tmpfs

Problem, das gelost wird:

= Schadcode im Container

s unkontrollierte Writes

Wann sinnvoll?
= einfache Webapps

= APIs

= Compliance-Anforderungen

Realitatsscheck

= nicht jede App unterstiitzt das
= erhoht Setup-Komplexitit

= Debugging schwieriger

<~ Optionales Hardening

Abschnitt F
Update- & Release-Strategie

Use Case: Staging to Produktion

yes—» Production

Git Repo Staging VM —Test

no— Fix & Retry

Problem, das gelost wird:
= kaputte Updates

= Downtime

= Freitagabend-Deployments

Wann sinnvoll?

= mehrere produktive Apps

= Business-kritische Systeme

Abschnitt G
Zentrales Logging

Use Case: Logs an einem Ort

App Logs

N

Traefik Logs

Log Collector

Host Logs

S

Search / Viewer

Problem, das gelost wird:
= Debugging liber SSH

= [,0gs verstreut

Wann sinnvoll?

= viele Services
= Audit-Anforderungen

= hiufige Fehleranalyse

Abschnitt H
Backup-Strategie — 3-2-1

Use Case: 3-2-1 Backup (praxisnah)
e

Local Backup Offsite Backup

Immutable / Versioned
Storage

Problem, das gelost wird:

= Ransomware
= Datenverlust

= menschliche Fehler

Wann sinnvoll?

= kritische Daten
= rechtliche Anforderungen

= langere Aufbewahrung

Zusammenfassung — Advanced heifSt nicht besser

Merksatze zum Mitnehmen:

= Stabil schlagt komplex
m Security ist ein Prozess
= Nicht jedes Tool passt zu jedem Team

= Know your limits

Nachste Schritte fur euch

Fragen fiir den Transfer:

= Was brauchen wir wirklich?
= Was konnen wir betreiben?

= Was lagern wir aus?

ATra

Danke furs Mitmachen ¢

CSAW x HoliSec
Lakeside Science & Technology Park

Fragen? Diskussion? Austausch?

