
DIGITALISIERUNG FÜR KMU 
MÖGLICH MACHEN
DER DIGITAL INNOVATION HUB SÜD ALS KOSTENLOSES 
SERVICE FÜR KMU 



Application Container Orchestration
Kubernetes



3/34Kubernetes

Kubernetes (k8s)
Platform for deployment and management of 
containerized applications and services 
● Automatic rollouts and rollbacks
● Secret (e.g. credentials) and configuration management
● Automatic scaling and load balancing 
● Automatic restart of failing containers
● Management of node resources (CPU, memory)



4/34Kubernetes

Overview

Source: https://www.redhat.com/en/topics/containers/what-is-kubernetes 

https://www.redhat.com/en/topics/containers/what-is-kubernetes


5/34Kubernetes

Kubernetes (k8s)
Software for container orchestration across several hosts 
● Container Runtime Interface (CRI) 

– Supported by several container runtimes, e.g. containerd, CRI-O
● Container Network Interface (CNI)

– Provides plugin-support for cluster networking
– E.g. Flannel, Calico, AWS VPC

● Container Storage Interface (CSI)
– Provides plugin-support for exposing of block and filesystem storage to 

containers
– E.g. AWS EBS, azureDisk, cephfs, cinder, iSCSI, nfs



6/34Kubernetes

Kubernetes Concepts - Cluster

Source: https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/

Node runs applications
● Provides the Kubernetes runtime 

environment
● Maintains running pods
Control Plane coordinates the 
cluster
● Scheduling and scaling of 

applications, rolling out updates, …
● Per default does not run 

applications

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/


7/34Kubernetes

Control Plane Components
Kube-apiserver

● Exposes the front-end for the Kubernetes control plane (Kubernetes API)

Etcd
● Key value store as backing store for all cluster data

Kube-scheduler
● Watches newly created pods that have no node assigned, and selects a node for them to run on

Kube-controller-manager
● Runs controllers (node, replication, endpoints, service account & token)

Cloud-controller-manager
● Runs controllers that interact with the underlying cloud providers



8/34Kubernetes

Node Components
Kubelet
● Agent that ensures that containers are running in a pod
Kube-proxy
● Network proxy that maintains network rules on nodes
Container runtime
● Software that is responsible for running containers 

e.g. containerd, cri-o



9/34Kubernetes

Kubernetes Addons
DNS
● DNS server, which serves DNS records for Kubernetes services

Web-UI (Dashboard)
● General purpose, web-based UI for Kubernetes clusters

Container resource monitoring
● Records generic time-series metrics about containers in a central database, and provides a 

UI for browsing that data

Cluster-level logging
● Responsible for saving container logs to a central log store with search/browsing interface



10/34Kubernetes

Kubernetes Objects
Persistent entities, describing ...
● what containerized applications are 

running (and on which nodes)
● what resources are available to those 

applications
● the policies defining how those 

applications have to behave

“record of intent” describing the 
desired state of the cluster
● The Control Plane tries to match the 

cluster reality to defined objects

Required information in 
YAML/JSON format
● ApiVersion
● kind (e.g. pod, deployment, 
service)

● metadata (e.g. name, UID, 
namespace)

● spec (depending on chosen 
object kind)



11/34Kubernetes

Pod Objects
Encapsulates an application’s 
● Container(s)
● Storage resources (volumes 

shared between the containers)
● Network identity (IP address 

shared between the containers)

All containers of a Pod run on 
the same Node

apiVersion: v1
kind: Pod
metadata:
  name: static-web
  labels:
    app: mywebapp
spec:
  containers:
    - name: web
      image: nginx
      ports:
        - name: web
          containerPort: 80
          protocol: TCP



12/34Kubernetes

Pod Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/


13/34Kubernetes

Pod InitContainer
A Pod  can also have one or more init containers, which are 
run before the app containers are started

Init containers always run to completion before the regular 
(main) containers are started

Each init container must complete before the next one 
starts



14/34Kubernetes

InitContainer Example Use Cases
Waiting for a service to be created

Delay the start of the app container

Clone a GIT repository into a volume

Initialize the content of a database

Register the Pod with a remote server

Generate the configuration for the main app container



15/34Kubernetes

InitContainer Example
apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
    app.kubernetes.io/name: MyApp
spec:
  containers:
  - name: myapp-container
    image: busybox:1.28
    command: ['sh', '-c', 'echo The app is running! && sleep 3600']
  initContainers:
  - name: init-myservice
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup myservice.svc.cluster.local; do echo 
waiting for myservice; sleep 2; done"]



16/34Kubernetes

Controller Objects
Creates and manages 
multiple Pods
Handles replication and 
rollout
Provides self-healing at 
cluster-scope
Types of controllers 
include “Deployment”, 
“DaemonSet”, “Jobs”

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
...

...
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80



17/34Kubernetes

Deployment Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/


18/34Kubernetes

Service Objects
Exposes an application running on a set of 
Pods as a network service

Abstraction which defines a logical set of 
Pods and a policy by which to access them

ClusterIP (default type) 
● Exposes the service on a cluster-internal IP
● Service is only reachable from within the cluster

NodePort 
● Exposes the service on each cluster node’s IP

LoadBalancer 
● Exposes the service externally using a cloud 

provider’s load balancer

ExternalName
● Maps an internal cluster DNS name to an 

external service name using a CNAME record

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376



19/34Kubernetes

Service Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/


20/34Kubernetes

https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/

Scaling Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/


21/34Kubernetes

Ingress
Ingress exposes HTTP and HTTPS routes 
from outside the cluster to services within 
the cluster

● Traffic routing is controlled by rules defined on 
the Ingress resource

● Does not expose arbitrary ports or protocols

Implemented by an Ingress Controller 
● Several implementations are available, e.g. 

“ingress-nginx”
● Must be explicitly deployed

API is frozen, new features are being added 
to the Gateway API

 https://kubernetes.io/docs/concepts/services-networking/ingress/

https://kubernetes.io/docs/concepts/services-networking/ingress/


22/34Kubernetes

 Ingress Resource Example
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: minimal-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  ingressClassName: nginx-example
  rules:
  - http:
      paths:
      - path: /testpath
        pathType: Prefix
        backend:
          service:
            name: test
            port:
              number: 80

Name: must be a valid DNS subdomain name

Annotations: used to configure options 
depending on the Ingress controller

● Different controllers support different annotations
● E.g. “nginx.ingress.kubernetes.io/rewrite-target” 

specifies the target URI where the traffic must be 
redirected

Spec: provides the information to configure a load 
balancer or proxy server

● A reference to the IngressClass resource provides 
additional configuration including the name of the 
controller

● Contains a list of rules matched against all incoming 
requests



23/34Kubernetes

Kubernetes Storage (1)
Container filesystem
● Exists until container lifetime 

ends (e.g. crash)
Ephemeral Volume
● Exists until pod lifetime ends
● Can be shared between 

containers in pod
● Various types (emptyDir, 

configMap, secret, ...)

apiVersion: v1
kind: Pod
metadata:
  name: redis
spec:
  containers:
  - name: redis
    image: redis
    volumeMounts:
    - name: redis-storage
      mountPath: /data/redis
  volumes:
  - name: redis-storage
    emptyDir: {}



24/34Kubernetes

Kubernetes Storage (2)
Persistent volume (PV)
● Exists until cluster lifetime ends
● Pre-configured by the administrator or dynamically provisioned by a 

CSI driver
Persistent volume claim (PVC)
● Abstracts details of how storage is provided from how it is consumed
● A Pod can not mount a PV object directly, it needs to ask for it
● That asking action is achieved by creating a PVC object and attaching it 

to the Pod (PVCs and PVs have a one-to-one mapping)



25/34Kubernetes

Source: https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/

Kubernetes Storage (3)

https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/


26/34Kubernetes

Kubernetes Storage (4)
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfsvol1
  labels:
    type: nfs
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteMany
  nfs:
    server: 192.168.49.1
    path: /srv/nfsvol1

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: dbvol
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: ""
  resources:
    requests:
      storage: 1Gi
  selector:
    matchLabels:
      type: nfs

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mydb
 spec:
  Template:
      volumes:
      - name: data-vol
        persistentVolumeClaim:
          claimName: dbvol
      containers:
      - name: db
…
        volumeMounts:
        - name: data-vol
          mountPath: /var/lib/mysql



27/34Kubernetes

ConfigMap
Used to store non-confidential data for pods in key-value pairs
● “data” field contains UTF-8 strings
● “binaryData” field contains binary data as base64-encoded strings
Pods can us ConfigMaps as 
● Environment variables
● Command-line arguments
● Configuration files in a volume
The name of a ConfigMap must be a valid DNS subdomain 
name



28/34Kubernetes

ConfigMap Definition Example
apiVersion: v1
kind: ConfigMap
metadata:
  name: game-demo
data:
  # property-like keys; each key maps to a simple value
  player_initial_lives: "3"
  ui_properties_file_name: "user-interface.properties"

  # file-like keys
  game.properties: |
    enemy.types=aliens,monsters
    player.maximum-lives=5    
  user-interface.properties: |
    color.good=purple
    color.bad=yellow
    allow.textmode=true    



29/34Kubernetes

ConfigMap Usage Example
apiVersion: v1
kind: Pod
metadata:
  name: configmap-demo-pod
spec:
  containers:
    - name: demo
      image: alpine
      command: ["sleep", "3600"]
      env:
        - name: PLAYER_INITIAL_LIVES 
          valueFrom:
            configMapKeyRef:
              name: game-demo          
              key: player_initial_lives



30/34Kubernetes

Secrets
Similar to ConfigMaps but specifically intended to hold confidential data:
● Passwords, tokens or keys
● Allows to pull container images from private registries

There are different types of secrets for different use cases
● Opaque, kubernetes.io/dockerconfigjson, kubernetes.io/ssh-auth, …
● See https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

Caution: Secrets are, by default, stored unencrypted
● Anyone with API access can retrieve or modify a Secret
● See https://kubernetes.io/docs/concepts/security/secrets-good-practices/

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://kubernetes.io/docs/concepts/security/secrets-good-practices/


31/34Kubernetes

Secret Example
apiVersion: v1
kind: Secret
metadata:
  name: secret-ssh-auth
type: kubernetes.io/ssh-auth
data:
  # the data is abbreviated in this example
  ssh-privatekey: |
    UG91cmluZzYlRW1vdGljb24lU2N1YmE=
    



32/34Kubernetes

Summary

https://www.redhat.com/en/topics/containers/what-is-kubernetes 

https://www.redhat.com/en/topics/containers/what-is-kubernetes


33/34Kubernetes

Any Questions ? 



34/34Kubernetes

Further Reading

https://kubernetes.io


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

