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Kubernetes (k8s)
Platform for deployment and management of 
containerized applications and services 
● Automatic rollouts and rollbacks
● Secret (e.g. credentials) and configuration management
● Automatic scaling and load balancing 
● Automatic restart of failing containers
● Management of node resources (CPU, memory)
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Overview

Source: https://www.redhat.com/en/topics/containers/what-is-kubernetes 

https://www.redhat.com/en/topics/containers/what-is-kubernetes
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Kubernetes (k8s)
Software for container orchestration across several hosts 
● Container Runtime Interface (CRI) 

– Supported by several container runtimes, e.g. containerd, CRI-O
● Container Network Interface (CNI)

– Provides plugin-support for cluster networking
– E.g. Flannel, Calico, AWS VPC

● Container Storage Interface (CSI)
– Provides plugin-support for exposing of block and filesystem storage to 

containers
– E.g. AWS EBS, azureDisk, cephfs, cinder, iSCSI, nfs
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Kubernetes Concepts - Cluster

Source: https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/

Node runs applications
● Provides the Kubernetes runtime 

environment
● Maintains running pods
Control Plane coordinates the 
cluster
● Scheduling and scaling of 

applications, rolling out updates, …
● Per default does not run 

applications

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
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Control Plane Components
Kube-apiserver

● Exposes the front-end for the Kubernetes control plane (Kubernetes API)

Etcd
● Key value store as backing store for all cluster data

Kube-scheduler
● Watches newly created pods that have no node assigned, and selects a node for them to run on

Kube-controller-manager
● Runs controllers (node, replication, endpoints, service account & token)

Cloud-controller-manager
● Runs controllers that interact with the underlying cloud providers
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Node Components
Kubelet
● Agent that ensures that containers are running in a pod
Kube-proxy
● Network proxy that maintains network rules on nodes
Container runtime
● Software that is responsible for running containers 

e.g. containerd, cri-o
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Kubernetes Addons
DNS
● DNS server, which serves DNS records for Kubernetes services

Web-UI (Dashboard)
● General purpose, web-based UI for Kubernetes clusters

Container resource monitoring
● Records generic time-series metrics about containers in a central database, and provides a 

UI for browsing that data

Cluster-level logging
● Responsible for saving container logs to a central log store with search/browsing interface
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Kubernetes Objects
Persistent entities, describing ...
● what containerized applications are 

running (and on which nodes)
● what resources are available to those 

applications
● the policies defining how those 

applications have to behave

“record of intent” describing the 
desired state of the cluster
● The Control Plane tries to match the 

cluster reality to defined objects

Required information in 
YAML/JSON format
● ApiVersion
● kind (e.g. pod, deployment, 
service)

● metadata (e.g. name, UID, 
namespace)

● spec (depending on chosen 
object kind)
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Pod Objects
Encapsulates an application’s 
● Container(s)
● Storage resources (volumes 

shared between the containers)
● Network identity (IP address 

shared between the containers)

All containers of a Pod run on 
the same Node

apiVersion: v1
kind: Pod
metadata:
  name: static-web
  labels:
    app: mywebapp
spec:
  containers:
    - name: web
      image: nginx
      ports:
        - name: web
          containerPort: 80
          protocol: TCP
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Pod Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
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Pod InitContainer
A Pod  can also have one or more init containers, which are 
run before the app containers are started

Init containers always run to completion before the regular 
(main) containers are started

Each init container must complete before the next one 
starts
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InitContainer Example Use Cases
Waiting for a service to be created

Delay the start of the app container

Clone a GIT repository into a volume

Initialize the content of a database

Register the Pod with a remote server

Generate the configuration for the main app container
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InitContainer Example
apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
    app.kubernetes.io/name: MyApp
spec:
  containers:
  - name: myapp-container
    image: busybox:1.28
    command: ['sh', '-c', 'echo The app is running! && sleep 3600']
  initContainers:
  - name: init-myservice
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup myservice.svc.cluster.local; do echo 
waiting for myservice; sleep 2; done"]
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Controller Objects
Creates and manages 
multiple Pods
Handles replication and 
rollout
Provides self-healing at 
cluster-scope
Types of controllers 
include “Deployment”, 
“DaemonSet”, “Jobs”

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
...

...
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80
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Deployment Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
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Service Objects
Exposes an application running on a set of 
Pods as a network service

Abstraction which defines a logical set of 
Pods and a policy by which to access them

ClusterIP (default type) 
● Exposes the service on a cluster-internal IP
● Service is only reachable from within the cluster

NodePort 
● Exposes the service on each cluster node’s IP

LoadBalancer 
● Exposes the service externally using a cloud 

provider’s load balancer

ExternalName
● Maps an internal cluster DNS name to an 

external service name using a CNAME record

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
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Service Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/

https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
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https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/

Scaling Concept

https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
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Ingress
Ingress exposes HTTP and HTTPS routes 
from outside the cluster to services within 
the cluster

● Traffic routing is controlled by rules defined on 
the Ingress resource

● Does not expose arbitrary ports or protocols

Implemented by an Ingress Controller 
● Several implementations are available, e.g. 

“ingress-nginx”
● Must be explicitly deployed

API is frozen, new features are being added 
to the Gateway API

 https://kubernetes.io/docs/concepts/services-networking/ingress/

https://kubernetes.io/docs/concepts/services-networking/ingress/
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 Ingress Resource Example
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: minimal-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  ingressClassName: nginx-example
  rules:
  - http:
      paths:
      - path: /testpath
        pathType: Prefix
        backend:
          service:
            name: test
            port:
              number: 80

Name: must be a valid DNS subdomain name

Annotations: used to configure options 
depending on the Ingress controller

● Different controllers support different annotations
● E.g. “nginx.ingress.kubernetes.io/rewrite-target” 

specifies the target URI where the traffic must be 
redirected

Spec: provides the information to configure a load 
balancer or proxy server

● A reference to the IngressClass resource provides 
additional configuration including the name of the 
controller

● Contains a list of rules matched against all incoming 
requests
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Kubernetes Storage (1)
Container filesystem
● Exists until container lifetime 

ends (e.g. crash)
Ephemeral Volume
● Exists until pod lifetime ends
● Can be shared between 

containers in pod
● Various types (emptyDir, 

configMap, secret, ...)

apiVersion: v1
kind: Pod
metadata:
  name: redis
spec:
  containers:
  - name: redis
    image: redis
    volumeMounts:
    - name: redis-storage
      mountPath: /data/redis
  volumes:
  - name: redis-storage
    emptyDir: {}
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Kubernetes Storage (2)
Persistent volume (PV)
● Exists until cluster lifetime ends
● Pre-configured by the administrator or dynamically provisioned by a 

CSI driver
Persistent volume claim (PVC)
● Abstracts details of how storage is provided from how it is consumed
● A Pod can not mount a PV object directly, it needs to ask for it
● That asking action is achieved by creating a PVC object and attaching it 

to the Pod (PVCs and PVs have a one-to-one mapping)
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Source: https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/

Kubernetes Storage (3)

https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/
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Kubernetes Storage (4)
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfsvol1
  labels:
    type: nfs
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteMany
  nfs:
    server: 192.168.49.1
    path: /srv/nfsvol1

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: dbvol
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: ""
  resources:
    requests:
      storage: 1Gi
  selector:
    matchLabels:
      type: nfs

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mydb
 spec:
  Template:
      volumes:
      - name: data-vol
        persistentVolumeClaim:
          claimName: dbvol
      containers:
      - name: db
…
        volumeMounts:
        - name: data-vol
          mountPath: /var/lib/mysql
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ConfigMap
Used to store non-confidential data for pods in key-value pairs
● “data” field contains UTF-8 strings
● “binaryData” field contains binary data as base64-encoded strings
Pods can us ConfigMaps as 
● Environment variables
● Command-line arguments
● Configuration files in a volume
The name of a ConfigMap must be a valid DNS subdomain 
name
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ConfigMap Definition Example
apiVersion: v1
kind: ConfigMap
metadata:
  name: game-demo
data:
  # property-like keys; each key maps to a simple value
  player_initial_lives: "3"
  ui_properties_file_name: "user-interface.properties"

  # file-like keys
  game.properties: |
    enemy.types=aliens,monsters
    player.maximum-lives=5    
  user-interface.properties: |
    color.good=purple
    color.bad=yellow
    allow.textmode=true    
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ConfigMap Usage Example
apiVersion: v1
kind: Pod
metadata:
  name: configmap-demo-pod
spec:
  containers:
    - name: demo
      image: alpine
      command: ["sleep", "3600"]
      env:
        - name: PLAYER_INITIAL_LIVES 
          valueFrom:
            configMapKeyRef:
              name: game-demo          
              key: player_initial_lives
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Secrets
Similar to ConfigMaps but specifically intended to hold confidential data:
● Passwords, tokens or keys
● Allows to pull container images from private registries

There are different types of secrets for different use cases
● Opaque, kubernetes.io/dockerconfigjson, kubernetes.io/ssh-auth, …
● See https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

Caution: Secrets are, by default, stored unencrypted
● Anyone with API access can retrieve or modify a Secret
● See https://kubernetes.io/docs/concepts/security/secrets-good-practices/

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://kubernetes.io/docs/concepts/security/secrets-good-practices/
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Secret Example
apiVersion: v1
kind: Secret
metadata:
  name: secret-ssh-auth
type: kubernetes.io/ssh-auth
data:
  # the data is abbreviated in this example
  ssh-privatekey: |
    UG91cmluZzYlRW1vdGljb24lU2N1YmE=
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Summary

https://www.redhat.com/en/topics/containers/what-is-kubernetes 

https://www.redhat.com/en/topics/containers/what-is-kubernetes
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Any Questions ? 
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Further Reading

https://kubernetes.io
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