

A1 Telekom Austria AG – Business Unit Enterprise A1November 22nd 2022

A¹ Austria

Drones in business - overview of selected use-cases

Regulations & U-Space

Role of TELECOMs in UAV business - A1 Telekom Austria Projects

A1 Telekom Austria UAS

Commercial drone market - trends and developments

Entwurf zur internen Diskus

A¹ Austria

- 1.190 commercial drones sold in Austria in 2019 (+6,3% compared to 2018)¹
- 30.000 drone operators registered via Austro Control by May 2022²
- Number of commercial drones expected to grow by 560% to 125K (2020-2030)³
- Market size over 1,5 billion Euros by 2025³
- Demand for commercial drones expected to grow by 16% per year until 2025³

Example drone use cases:

- Aerial measurement
- Asset inspection
- Videography
- Mapping & monitoring
- Various data gathering
- Transportation
- Delivery etc.

Currently most commercial drone flights are provided to customers as a service e.g.

 \rightarrow Drone as a Service (DaaS)

1: Branchenradar Drohnen in DACH 2020 (2020) | 2: Austro Control (2022) | 3: Bundesverband der Deutschen Luftverkehrswirtschaft (2021)

DaaS use-case example: Drones in construction

Inspection & Documentation of the construction site

Measurements & Digital Twins

Quantity surveying and Mapping

Asset Tracking

Work safety monitoring

Security monitoring

A¹ Austria

Source: Big Rentz

A

DaaS use-case example: Drones in agriculture

Source: Deutscher Bauernverband, Bundesinformationszentrum Landwirtschaft

DaaS use-case example: Drones in asset inspection

A¹ Austria

Source: Air&More, Skyability, Power Engineering

BVLOS opportunities example: Drones in search and rescue

A¹ Austria

Entwurf zur internen D

Enhanced search and rescue missions

1st aid kit / defibrillator delivery

Ski resort patrol / avalanche search and rescue

Remote monitoring of rescue missions

Ground-sky situational awareness for better mission co-ordination

Aus Liebe zum Menschen.

ÖSTERREICHISCHES ROTES KREUZ

Drones in business – overview of selected use-cases

Regulations & U-Space

A1 Telekom Austria Projects

VLOS vs. EVLOS vs. BVLOS

BVLOS growth projected at 17% yoy with the support from new EU regulations by the European Aviation Safety Agency (EASA)

A¹ Austria

The EASA has developed regulations for three distinct categories of drone operations

Open category Leisure and low-risk commercial drone operations

Most current commercial applications are expected in open and specific category

Specific category

Riskier operations mostly for **commercial** use VLOS and BVLOS

Certified category (BVLOS)

Operations with **highest level of risk** – case by case assessment by regulator e.g. passenger drones, cargo drones etc.

Source: European Aviation Safety Agency

Each category comes with its own set of guidelines

Open

- Leisure and low-risk commercial drone operations
- Registration of drone and operator
- Online license and practical training
- Compliance with rules for A1, A2 and A3 subcategories
- Weight dependent C category rules apply

Specific

Riskier operations mostly for commercial use

- Additional requirements to notify Aviation Authorities
- Operational risk assessment required to request authorization
- \square Max. takeoff weight 25 > kg

Certified

Operations with **highest level of risk**

- Development of regulations still in progress
- Involves cargo and passenger drones
- Mostly applies to BVLOS flights

Connectivity is currently not a requirement, however due to creation of national UTM systems, we expect this to be added as requirement soon.

Weather info

monitoring

for relevant zones

Drones in business - overview of selected use-cases

Regulations & U-Space

Role of TELECOMs in UAV business - A1 Telekom Austria Projects

A1 Telekom Austria Drone Project

Leveraging our retail infrastructure and our Telco resources to offer end-to-end b2c2b UAV bundles for customers such as sole proprietors, videographers, small DaaS operators etc.

Bundle Example:

Drone + Connectivity + Cloud + SaaS + Insurance

Small-medium clients

VLOS & EVLOS

BVLOS platform

With expected growth of BVLOS market A1 Telekom is in a strong position to provide infrastructure and services critical for developing and operating end-to-end BVLOS use-cases.

BVLOS is heavily dependent on:

Safety Data (provided by A1 & partners) + Connectivity + Cloud services

Large Enterprise clients

BVLOS

2023 ~

A1 Telekom Austria offer for small business clients

A1 Telekom Austria offer for enterprise clients

A1 BVLOS Platform

A1 Telekom is in strong position to play a pivotal role in providing dedicated 5G connectivity for BVLOS UAV use-cases.

Leveraging our relationships with leading hardware providers, combined with A1's cloud offering and ability to provide risk assessment services to clients for SORA, A1 is a strong partner for our enterprise clients in developing BVLOS UAV usecases.

5G dedicated UAV connectivity & cloud storage

5G standalone slice for autonomous vehicles. Talk to us about POC

Thank you! peter.kozar@a1.at

A¹ Austria

Unoccupied aerial vehicles in applied research: Technological and data-related aspects

Gernot Seier

Within the framework of the workshop
Possible use cases of drones for companies
DIH Süd, Klagenfurt,
22.11.2022

Photo: G. Seier, 09/2021

AIRlabs* Austria GmbH

*Aeronautical Innovation & Research Laboratories Austria

- Austrian BMK-innovation laboratory
- Multisite-concept with specialized infrastructure
 - Research and development
 - Validation
 - Integration
- For users, industry, research institutions and the public sector

AIRlabs Austria consortium

Development according to technology readiness level (TRL)

Operational levels

Level	1	2	3	4	5	6	7
Name	Research, Development Technological fundamentals Engineering and Simulation	Research, Development Application-oriented tests Specialized laboratories, climatic wind and icing tunnels, indoor flight halls	<u>Validation</u> Airspace small Civil R/TSA areas	<u>Validation</u> Airspace large Civil R/TSA areas	Integration Operational environment UAM CTR areas	Integration Specific operational environments External and internal aerial survey of specific infrastructures	Integration Effective airspace Regulated by ACG beyond the innovation laboratory
TRL	TRL 1 - 5	TRL 2 - 5	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 7 - 8
				TAT -			

Temporary Restricted Area LO R 9 STEINALPL, Effective date 31.08.2022

REPUBLIK ÖSTERREICH

Operational levels

Level	1	2	3	4	5	6	7
Name	Research, Development Technological fundamentals Engineering and Simulation	Research, Development Application-oriented tests Specialized laboratories, climatic wind and icing tunnels, indoor flight halls	<u>Validation</u> Airspace small Civil R/TSA areas	<u>Validation</u> Airspace large Civil R/TSA areas	Integration Operational environment UAM CTR areas	Integration Specific operational environments External and internal aerial survey of specific infrastructures	Integration Effective airspace Regulated by ACG beyond the innovation laboratory
TRL	TRL 1 - 5	TRL 2 - 5	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 7 - 8
				TA			

Cities selected for the survey

EASA Pro

Q Search

- Barcelona
- Budapest
- Hamburg
- Milan
- Paris
- Øresund cross-border region between Denmark and Sweden

URBAN AIR MOBILITY 10 KEY SURVEY RESULTS

Urban Air Mobility (UAM) is a new mode of air transport of goods and passengers in urban environments, using electric aircraft taking off and landing vertically, with or without a pilot on board. First operations will be a reality 3 to 5 years from now.

https://www.easa.europa.eu/en/uam-10-key-findings

A POSITIVE INITIAL ATTITUDE TO UAM THROUGHOUT THE EU

83% express an initial positive attitude towards UAM

64% and 49% ready to try out drones and air taxis respectively

Very homogeneous replies and no major differences across cities and respondent groups

https://www.easa.europa.eu/en/uam-10-key-findings

.

Emergency and/or medical transport use cases receive greatest public interest. Top three use cases:

41% transport of injured person to hospital **41%** drone delivery of groceries of medical supplies to hospitals

36% transport of emergency medical personnel

STRONG SUPPORT FOR USE CASES THAT ARE VALUABLE TO ALL

https://www.easa.europa.eu/en/uam-10-key-findings

AIRlabs Austria Unmanned Traffic Management

Glaciological UAV-based research: Case study Austerdalsbreen, Norway

Fieldwork 2021, JOSTICE (jostice.no)

Technological and data-related aspects

3 days (September 2021) of fieldwork Two different multirotor UAVs ~4,400 photographs Visible and TIR spectrum Direct and indirect georeferencing

UAVs in (glaciological) research ...

- are a great opportunity for high-resolution and tailored mapping or other surveys/measurements.
- require in-depth preparation and a lot of effort (time, hardware, intellectual work) during and after the fieldwork.
- are in many cases beyond a cost-effective mission (requirements, TRL), but entail personal involvement.
- However, the hardware and software components are in most cases developed and produced by companies, which is why there are a lot of research-related use cases of drones for companies.

Drones, 5G and Examples of Current Funding Opportunities

POSSIBLE USE CASES OF DRONES FOR COMPANIES Klagenfurt, 22 Nov 2022

DI Dr.-Ing Holger Friehmelt

Institute Director FH JOANNEUM Luftfahrt/Aviation and Technical-Scientific Director AIRlabs Austria GmbH

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

The projects AIRlabs and EMoTe have received funding from the Austrian research funding programme Take Off. Take Off is a Research, Technology and Innovation Funding Programme of the Republic of Austria, Ministry for Climate Action. The Austrian Research Promotion Agency (FFG) has been authorised for the Programme Management.

- The projects AIRIabs and EMoTe have received funding from the Austrian research funding programme Take Off. Take Off is a Research, Technology and Innovation Funding Programme of the Republic of Austria, Ministry for Climate Action. The Austrian Research Promotion Agency (FFG) has been authorised for the Programme Management.
- Die Projekte AIRIabs und EMoTe werden gefördert bzw. finanziert im Rahmen des FTI-Programms Take Off durch das Bundesministerium für Klimaschutz und von der Österreichischen Forschungsförderungsgesellschaft abgewickelt.

The Bright Future of Drone Delivery Services

Drone Delivery Services Market Snapshot (2022-2032)

[300 Pages Report] The global **drone delivery services market** is anticipated to be valued at **US\$ 322.2 Million** in 2022. During the forecast period ranging from 2022-2032, sales of Drone Delivery Services market are expected to grow at a CAGR of **33.0%**, to be valued at **US\$ 5,596 Million**. During the historical period 2016-2021, Drone Delivery Services demand inclined at a **5.8%** value CAGR.

Data Points	Key Statistics
Expected Market Value (2022)	US\$ 322.2 Million
Anticipated Forecast Value (2032)	US\$ 5,596.0 Million
Projected Growth Rate (2022-2032)	33% CAGR

With rising demand for drone delivery services, numerous governments are relaxing restrictions to enable drones to fly in their airspace, which is projected to boost the growth of drone procurements to supply new delivery routes for remote places throughout the projection period. As a result, the market for drone delivery services has expanded.

DIGITAL JOURNAL

The Bright Future of UAS Services

WORLD

Drone Service Market Growth – at a CAGR of 46.8% | Increasing demand for drone service due to development of urban air mobility services

TECH & SCIENCE

By GetNews Published September 16, 2022

Drone service market size was USD 9.60 Billion in 2021 and is expected to register a revenue CAGR of 46.8%

BUSINESS

ENTERTAINMENT

LIFE

SPORTS

SOCIAL MEDIA

Wireless Technologies in UAS Services

Moving drones forward in leaps and bounds

Drone technology is still developing quickly across multiple fronts. "Drones are extremely interesting products because there's about 25 relevant technology subsystems under the hood," says Joe Enke. These subsystems include the cameras, the positioning systems, the sensors, the wireless technologies, the batteries as well as advanced materials and thermal management.

Examples of 5G and Drones Applications

DRONE INDUSTRY INSIGHTS

HOW 5G LEVERAGES DRONE APPLICATIONS

Establishing Unmanned Traffic Management (UTM) Systems

CHALLENGE: How do we manage the growing number of drones in the air? ROLE OF 5G: Support low-altitude drone communication and surveillance. Key HURDLES: Regulations, Integrating Drone Operations with Manned Airspace.

Improving and Scaling Flights Beyond the Visual Line of Sight

CHALLENGE: How do we conduct scalable BVLOS flights for crucial drone applications?
ROLE OF 5G: High-quality and widespread connectivity enabling secure BVLOS flights.
KEY HURDLES: Regulations; Establishing a Sufficiently Wide Network.

Data Transmission CHALLENCE: How do we most effectively transmit the vast amounts of data from and to ground stations? ROLE OF 5G: Offering a stable and widespread data connection with large bandwidth capacity and low latency. KEY HURDLES: Establishing Stable Network Connections also in Rural Areas.

Source: DRONEII.com Da

Date: April 21st 2020

© 2020 all rights reserved | DRONE INDUSTRY INSIGHTS | Hamburg, Germany | www.droneii.com

AIR labs

Current National Research Strategy

💳 Bundesministerium

Energie Innovat

Mobilität

Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Service Themen Ministerium Recht QC DE 🗸

☆ > Themen > Innovation > Aktivitäten > Luftfahrttechnologie > FTI-Strategien für Luftfahrt

FTI-Strategien für Luftfahrt

novation	Die Österreichische Gesamtstrategie 2040+ für den Luftfahrtsektor besteht aus zwei	Enademonterum Kinagdurg (knapt,			
Aktivitäten	Teilstrategien, die zusammenwirkend den Weg zur Dekarbonisierung gemäß	elengipa velasione. Innergatare und Pacheologie			
Digitale Technologien	Mobilitätsmasterplan 2030 weisen:	Klimafreundliche Luftfahrt-			
Energie und Umwelt	 Die Luftfahrtstrategie 2040+ Die FTI Strategie für Luftfahrt 2040+ Sie sind in ihrer Umsetzung eng miteinander verwoben und sollten daher stets 	innovationen			
Innovationsfördernde öffentliche Beschaffung (IÖB)		Die Strategie für Forschung, Technologie und Innovation für die österreichische Luftfahrt 2040+			
Innovative und wettbewerbsfähige Unternehmen					
Kooperation von Wissenschaft und Wirtschaft	gemeinsam betrachtet werden.				
Luftfahrttechnologie	Mit der Forschungs-, Technologie- und Innovationsstrategie für Luftfahrt formuliert das BMK in Zusammenarbeit mit den Stakeholdern der heimischen				
ERA-NET Air Transport Net	Luftfahrt(zuliefer)industrie, universitären und außeruniversitären Forschungsorganisationen	sowie Vertreter:innen des			
FTI-Strategien für Luftfahrt	österreichischen Luftverkehrs die gemeinsame Stoßrichtung um österreichische Akteure als Innovationstreib				
Take Off	 klimatitte und wegweisende Lösungen f ür ein zukunttsf ähiges Luftfahrtsystem zu positionieren. Die Strategie gilt a Grundlage f ür die österreichische Forschungs- und Innovationsagenda Luftfahrt deren Umsetzung wesentlich zum 				
Menschen, Qualifikation und Gender	ökologischen und digitalen Systemwandel beitragen soll.				

FTI Strategie f
ür Luftfahrt 2040+ (PDF, 1 MB)

Current National Research Call

Mit der Initiative "Take Off" werden Innovationen mit primärem Anwendungspotential in der zivilen Luftfahrt gefördert. Die Ausschreibung zielt auf klimafreundliche, wettbewerbsfähige und sichere Luftfahrt. Die Schwerpunkte der Ausschreibung sind klimafitte Marktsegmente, klimaneutrale Urban Air Mobility und Sustainable Aviation Fuels (SAFs) inkl. Wasserstoff.

More at : <u>Take Off Ausschreibung 2022 | FFG</u>

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Zukunftsträchtige Forschungs- & Innovationsthemen

	A Luftfahrzeug	<u>My</u> Produktion	由 Lufttransportsystem
Energiewende	 Alternative Antriebe & Treibstoffe (Batterie, SAF, Brennstoffzelle, H2-direkt, hybrid) Energieeffizienz durch Leichtbau, Design, Aero- dynamik, Konfigurationen All-Electric Aircraft 	 Energieeffizienz im Ferti- gungsprozess Energieoptimierter Mate- rialmix Tanksysteme 	 klimaneutrale Flughäfen und -plätze Infrastruktur (H2) Umweltoptimierte Höhen- und Routenführung Formationsflug
Kreislaufwirtschaft	 Wiederverwertung Wiederverwendung Wiederproduktion Reparierbarkeit 	 Materialauswahl CE-Design/5 R's Kreislauforientierter Fertigungsprozess Lebenszyklusanalyse 	 Kreislauforientierter Betrieb as-a-Service Modelle/ shared economy MRO am Boden
Mobilitätswende	 Anwendungsspezifische Transportkombinationen Anpassung an nutzungs- basierte Geschäftsmodelle Lärm und emissionsredu- zierte Konzepte 	 Nachhaltige Logistikkon- zepte Generative, bedarfskon- forme Fertigung 	 Flughafen als Mobilitäts- knoten Intermodalität, durchgän- gige Mobilitätskonzepte Barrierefreiheit Klimaoptimierte Flug- führung
Digitale Transformation	 unbemannte/automati- sierte Luftfahrzeuge Steuerung (automatisiert, Single Pilot,) Simulation Virtuelle Zulassung MRO 	 Vernetzte Produktion Digitaler Zwilling KI/Blockchain/Quanten- technologie as-a-Service Modelle 	 Cybersicherheit Aufbau Datenpool Integration von UAVs digitale Infrastruktur für U-SPACE Operationelle Effizienz Human Factors

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Ausblick Take Off Ausschreibung 2022

- Ausschreibung offen von 20.10.2022 12:00 bis 08.03.2023 12:00
- 8.1 ME Österreichische Marktsegmente: Strukturen, Komponenten und Innenausstattung, Sys-Cockpitausrüstung, Avionik, Flugzeug-Basissysteme, Vernetzte Luftverkehrsinfrastruktur, Intelligent Fluggeräteinfrastruktur, Nachhaltige Flughafeninfrastruktur, Bodentest-, Prüf- und Trainingsgeräte
- 1.4 ME Klimaneutrale Urban Air Mobility Erforschung und Integration Unbemannter Luftfahrtsysteme (UAS)
- 2.6 M€ Sustainable Aviation Fuels (SAF) Biotreibstoffe, synthetische Treibstoffe, Wasserstoff - Entwicklung und Systemfähigkeit
- Aviation Forum Austria 20 Jahre Take Off 19.10.2022 ab 9 Uhr, Erste Campus Wien

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

• 7,8 M€

• 3.2 M€

• 1.0 M€

Ausblick Take Off Ausschreibung 2023

• Ausschreibung voraussichtlich offen von Oktober 23 bis März 24 12:00

Innovative, ressourcen- und klimaschonende FTI-Lösungen, die einen wesentlichen Beitrag und Anschub zur Transformation des Luftfahrtsystems leisten.

Sustainable Aviation Fuels inkl. Wasserstoff

Missionsfeld Regionen: umweltfreundliche Mobilitäts- und Transportalternativen im Vor- und Nachlauf von Langstreckenflügen

bmk.gv.at

AIRlabs Vision

Our vision for AIRlabs Austria GmbH is to establish and operate a nationwide innovation laboratory in Austria which unites all key stakeholders from industry, research, and users to address all current and future needs from research, development, and validation of UAS in a sustainable way.

Die Vision der AIRlabs Austria GmbH ist der Aufbau und Betrieb eines österreichweiten Innovationslabors, das alle Schlüssel-Stakeholder bestehend aus Anwendern, Industrieunternehmen und Forschungseinrichtungen im Konsortium eint und damit nachhaltig die aktuellen und zukünftig absehbaren Anforderungen aus Forschung, Entwicklung und Validierung von UAS adressiert.

AIRlabs Summary and Key Facts

- Well balanced consortium with 25 partners from all over Austria
- ANSP, i.e. AustroControl, as integral partner
- Unique multisite concept with six levels covering all TRL
- Synergies to other autonomous testing regions and topics
- Non-profit scientifically focused project within the framework of the BMK/FFG TAKEOFF Program
- Collaboration potential to German LuFo program
- Considerable additional partners' contributions
- 17 LoI partners with a multitude of innovative applications
- Federal Ministry Republic of Austria Transport, Innovation and Technology

AIRlabs Value Proposition

Level	1	2	3	4	5	6	7
Description	Research, Development Fundamentals Laboratories, simulation, engineering	Research, Development Applied Research Indoor test range (AAU), climate wind tunnel (RTA) and other Infrastructures	<u>Validation</u> Airspace small Small civil R/TSA airspaces	<u>Validation</u> Airspace large Large civil R/TSA airspaces	Integration Application Area UAM Propably within CTR	Integration Application Spec. Operations Specific infrastructures	Integration Real Airspace Covered by Austro Control outside of the innovation laboratory
TRL	TRL 1 - 5	TRL 2 - 5	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 5 - 7	TRL 7 - 8

AIRlabs Value Proposition

Collaboration partners are always highly welcome!

www.airlabs.at

Lakeside Labs

6G for Connected Sky

Andreas Kercek Research Manager

UAV-Workshop, DIH-Süd, Nov. 22nd, 2022

Powered and financed by:

5G's "Killer App" Will Be 6G!

THEODORE S. RAPPAPORT, New York University (h-index: 120)

Why 6G?

Wang et al., Digital Communications and Networks, 08/2020

Use Case (capability)	5G	6G	
Augmented Reality for Industry (peak rate & capacity)	Low resolution / high level tasks	High resolution, multi- sensory/detailed tasks, co-design	
Telepresence (capacity)	High video quality, limited scale	Mixed reality/Holographic	Enhancement to
Security surveillance, Defect detection (positioning & sensing)	Manual	Automated	5G services
Distributed computing, Automation (time synchronization)	Micro-seconds level tasks	Higher precision nano second level tasks	
Dynamic digital twins and virtual worlds (real-time multi-sensory mapping and rendering)	Limited	Yes	
Wireless in Data Center (peak rate and capacity)	No	Yes	
Zero Energy devices (back scatter communications)	No	Yes	New services introduced in 6G
Swarms of robots or drones (low latency D2D)	Limited	Yes	
Bio sensors and Al	Limited	Yes	

© 2022 Nokia

Saad et al., IEEE Network, 05-06/2020

💳 Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

Promoting Innovation

Promoting Innovation

Energy, Mobility,

Innovation and Technology

Saad et al., IEEE Network, 05-06/2020

6G-Sky Key Data

CELTIC-NEXT project with the planned framework: Technical Focus: 6G Multi-Layer Architecture

- Duration: 05/2022-04/2025
- Project budget: ~9m€
- Effort in person years: ~60

Countries and funding bodies:

- **Austria:** Austrian Research Promotion Agency
- **Germany:** Federal Ministry for Economic Affairs and Climate Action
- Hungary: Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal
- Sweden: Ministry of Enterprise and Innovation

Partners:

- Coordinator: Airbus. Germany
- Technical Coordinator: KTH Royal Institute of Technology, Sweden
- **17 legal-entity partners** from industry (5), SMEs / startups (7), research institutes (2), government (2), universities (1)

6G-Sky Consortium

6G-Sky Objectives

Reliable and robust **connectivity for aerial and ground** users

- flexible and adaptive network architecture
- multiple communication technologies such as satellite and direct air to ground communication

Novel wireless **network design and management schemes** in 3-dimensional (3D) space

• different types of **aerial vehicles** with their unique requirements

Providing **robust**, **low latency and/or high-capacity** communications to **ground** users

• **rural areas** without any infrastructure via Non-Terrestrial Networks (NTNs)

Technical Focus: 6G Multi-Layer Architecture

6G-Sky Value Chain

- Security: AITIA

6G-Sky Demonstrations

1.) Lab Emulations

2.) Multi-technology Network Integration

3.) 3D Network Demonstration with Drone Swarm + Sense & Avoid

4.) Demonstration of High Altitude Platform networking

6G-Sky Logistics Use Case

Intermodal logistics: trains, trucks, autonomous vehicles (onsite)

Use Case "Demo of Blood Transport in Lilienfeld, NÖ"

POSSIBLE USE CASES OF DRONES FOR COMPANIES Klagenfurt, 22 Nov 2022

DI Dr.-Ing Holger Friehmelt

Institute Director FH JOANNEUM Luftfahrt/Aviation and Technical-Scientific Director AIRlabs Austria GmbH

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

The project AIRlabs has received funding from the Austrian research funding programme Take Off. Take Off is a Research, Technology and Innovation Funding Programme of the Republic of Austria, Ministry for Climate Action. The Austrian Research Promotion Agency (FFG) has been authorised for the Programme Management.

Mission

- Place: Lilienfeld, Lower Austria (NÖ)
- EVLOS Flight in Specific Category with UAV with less than 25 kg total mass
- Transport of donor blood bettween Red Cross Site and Hospital of Lilienfeld
- Only during civil daytime (sun less than 6° below horizon)

Parameter	Value
Maximum altitude	120 m
Maximum speed	60 km/h
Operating temperature	+5 °C to +50°C
Mode of operation	Automatic
Type of operation	EVLOS with Observer (Never done before)
Population	49 / km²
Airspace class	G

UAV

- Mission flight time 10 min
- Empty mass 11.5 kg
- Maximum takeoff mass 17 kg
- Max payload 5 kg (~ 3.74 kg in demo case)
 - Transportation box
 0.74 kg
 - NaCl "donor blood" 0.420 kg
 - Cooling pads
 0.66 k
- Operating temperature -10 °C to +50 °C
- Maximum climb rate 2.5 m/s
- Maximum sink rate 3.5 m/s
- Maximum horizontal speed 60 km/h

Ehang's Falcon

Figure 3: Lilienfeld in SOARIZON [1]

Ground Risk Buffer (GRB)

Figure 5: Ground Risk Buffer calculation for one specific waypoint

Vertical Profile

Figure 4: Altitude diagram[4]

EVLOS Concept with Observer

VLOS from drone to pilot 1

Photos from the SORA document

VLOS from drone to Observer

Test flight in open category with a DJI Mavic Pro

VLOS from drone to pilot 2

Thales Scaleflyt Remote ID

Additional Position Information

- Dimensionen 50 mm x 50 mm x 30 mm
- Gewicht 60 g
- Batterie (aufladen mit USB-C)
- Global Positioning System (GPS) und mobiles Netz
- Abbildung auf Handy-App

App Display:

- UAS on map
- Fluight duration
- Take off time
- Coordinates of tracker
- Height above ground
- Height above sealevel
- Horizontal speed
- Flight heading

Media Response

Mensch in Österreich eine lutkonserve, Wenn ein Krankenhaus Nachschub bestellt setzt sich ein Auto mit Fahrerin oder Fahrer in Bewegung, um das lebensrettende Blut zu liefern. Das Rote Kreuz und die FH JOANNE-UM erproblen jetztneue Wege, um dabei Zeit und Ressourcen zu sparen: Erstmals wurde am 22. Sep tember 2021 eine Blutkonserveiper Drohne ausgeliefert. Und zwar vollautomatisch. Die Aktion ist symbolisch, der Flug von der Rotkreuzbezirksstelle Lilienfeld (Nie ge Minuten, aber sie zeigt, wie Roten Kreuzes "Blutkonserven fen werden" In Ruanda würden Drohnen in Zukunft das Helfen er- mit Drohnen auszuliefern ist eine zum Beispiel bereits Blutkonser-

leichtern können. weitere vielversprechende An- ven von Drohnen ausgeliefert. Versprechen für die Zukunft. "Be- tiges Spielzeug, sondern gekom- reits medizinische Produkte auf nend. Erstmal wurde in einer soge reits jetzt verwenden wir Drohnen, men, um zu bleiben. Die Blaulichtetwabei Personensuchen oder zur organisationen hoffen, dass bei hraschen Lageerhebung nach gro- rem Einsatz künftig mehr möglich

derösterreich) ins nahegelegene Beren Unfallen", sagt Cerry Fortik, sein wird und die rechtlichen Rah-Studierende der Luftfahrtstudien-Landesklinikum dauerte nur weni- Bundesrettungskommandant des menbedingungen dafür geschaf- gange an der FH JOANNEUM. Nur durch deren talkräftige Milarbeil wurde dieses Projekt erst möglich. Und auch inhaltlich war diese wendung Drohnen sind kein flüch- Auch in der Schweiz werden be- Flugdemonstration hochspandiese Art transportiert. nannten Realumgebung er

Graz, sm 13.10.2021, Nr: Innovat. Mobilität, 2x/Jahr, Seite: 16-17

Blutkonserve

aus der Luft

Das Rote Kreuz hat erstmals eine Blutkonserve per

Drohne ausgeliefert, und zwar völlig automatisch. Die

FH JOANNEUM hat das Projekt wissenschaftlich begleitet.

Druckauflage: 169 797, Größe: 91,89%, easyAPQ _

Auftr.: 2598, Clip: 13894616, SB: FH Joanneum

Kleine Zeitung im Fokus 🔚 📷 Verlagsbeilage

Dahei war nichts abr rt ode FH JOANNEUM begleitete das über einem ssenen Area Projekt Eine Änderung der EU- gefig m in einem realen Vorschriften hat in Österreich erste sebiet. Die Drohne musste Erleichterungen gebracht, dog bei ihrem 2.4 km langen Flug zudas nationale Luftfahrtoe satzlich mehrere Hundert Hohenstreng. Flüge wie in Litienfeld meter zurücklegen und mit der in beantract wer-Windverhätnissen in einem solche Tal zurechtkommen ... Flach übe enmelt. Leiter des ifuls Tufffahrt/Aviation an der Leinen See oder das Meer kann e-H JOANNEUM, hat das Projekt der, mit unserem dreidimensiona wissenschaftlich begleitet. Die nö- den Fluid in Litienfeld aber haben tigen Technologien sind weltweit wir eine Weltpremiere hingelegt" vorhanden. Hier konnten wir aber freut sich Holger Eriehmelt für das mit österreichischem Know-how gesamte tea erstmals demonstrieren, wie man in han wolle sich nun in weiteren engem Zusammenspiel mit der Zu chritten und Demonstrationen lassungsbehörde in einer Realum an eine Serienanwendung herangebung einen sinnhaften Transport tasten. Dabei spielt auch die AIRrmöglichen kann", sagt er. "Ganz labs Austria, eine Ausgründung der FH JOANNEUM, eine gewich-SSOR IS IN THE REPORT tion im wahrsten Sinne des Worlds tige Rolle. Dieses vom BMK gewar "frisches Blut", namlich junge förderte innovationslabor stellt nämlich geoignete Testinfrastrukturen rund um die Drohnenliegere zur Verfügung, Neben dem Firmensitz in Edgendero deteiligten sich eine ganze Reihe von steinschen Parthern an All& labs – nicht nur im technisch-wiz serechaftlichen Bereich, sendern auch im Netzwerken durch das Luftfahrtoluster des AOstyria, ergönzt Friehmelt.

Richtige Software gibt Sicherheit. "Wir freuen uns über das Projekt. Unser eingesetztes Modell "Falcon L" gehört zu den führenden Log s-Ukprohnen wellweit und ist unter anderem bei DHL in China im Einsalz. Damit können wir Pakele bis zu fühf Kilogramm, mit einer Ge schwind okeit von 80 km/h rund 20 km weit transportieren - und das voll automatisiert. Unsere Lösung losst sich auf beliebig viele Drohnen skalleren 1 saot Andreas Perott, CMO Europe von Ellang.

FH JOANNEUM

Kleine Zeitung im Fokus

Graz, anr 13.10.2021, Nr: Innovat. Mobilität, 2x/Jahr, Seite: 16-17

Druckauflage: 169 797, Cröße: 93,78%, easyAPQ: _

Auftr.: 2598. Clip: 13894616, 58: FH Loanneuro

Verlagsbeilage

Eine Mitarbeiterin am Luftfahrtinstitut der FH Joanneum zeigt die Blutkonserven-Drohne

Man wolle sich nun in weiteren Schritten und Demonstrationen an eine Serienanwendung herantasten. Dabei spielt auch die AIRlabs Austria ... eine gewichtige Rolle. Dieses vom BMK geförderte Innovationslabor stellt nämlich geeignete Testinfrastrukturen rund um die Drohnenfliegerei zur Verfügung.

Zum eigenen Gebrauch nach §4Za UrbG. Digitale Nutzung gene PDN Ventrag des VOZ vaeziat. Anfragen zum Inhalt und zu Nutzungsrechten bitte an den Verlag (Tel: 0305/87573308).

Seite: 1/2

Seite: 2/2

Zum eigenen Gebrauch nach §42a UmG. Digitale Nutzung gem PDN-Vertrag des VÖZ voez.at. Anfragen aum Inhalt und zu Nutzungsrechten bitte an den Verlag (Tel: 0306/875*3308).

Discussion of Mobile Communication Requirements of Demo Case

- Team to Ops Center in China
- Ops Center in China to Drone
- Pilot 1, Observer, Pilot 2
- FIC Wien to local pilot
- Remote ID (Thales)
- Communication local team to ÖRK Christopherus Ops
- Local team to potential air traffic

VoIP (WeChat via 4G LTE 5G) **Datalink** (Internet via 4G LTE 5G) **Cellphone** (Mobile Network 4G LTE 5G) **Cellphone** (Mobile Network 4G LTE 5G) **Datalink** (Internet via 4G LTE 5G) **Radio** (Ultrashort Wave Terrestrial and Trunked Radio Digital BOS Radio (380 to 400 MHz)

Air Traffic Radio (VHF 117,975 to 137 MHz)

Thank you very much for your attention!

Communication in Swarms Use Case Presentation

Christian Raffelsberger

Senior Researcher

Key Facts: Non-profit research organization on self-organizing, networked systems currently 17 researchers research topics: swarm intelligence, wireless communication, multi-robot systems (focus on drones), sensor networks

Lakeside Labs SELF-ORGANIZING NETWORKED SYSTEMS

Klagenfurt University

Cellular Connected drones: Introduction

Application example S&R and monitoring in forest fires

Application example Ship maintenance

BugWright2

Trondheim < Havn

Tech

Cellular-connected drones Ad-hoc vs cellular

Ad-hoc communication

mainly IEEE 802.11 WiFi

- + COTS hardware
- communication range (LOS)
- scalability
- antenna orientation (3D)
- interference (ISM bands)
- + adaptability/modifciations

LTE, 5G + COTS hardware + scalability

Cellular-connected drones + communication range (BVLOS) ~ data rates in the uplink ~ antenna orientation ~ interference - adaptability/modificiations

Cellular Connected drones: Integration Issues

Cellular-connected drones Interference and handover issues

Antennas oriented towards ground, frequent handovers due to connectivity via side lobes

Base Station BSR

LOS connectivity to distant base stations, increased interference in cells using the same frequency

Cellular-connected drones Uplink limitations

limited by uplink

current cellular architectures **do not** provide direct device-to-device **communication**, hence drones are

Cellular-connected drones Real-world evaluations (LTE-A)

Base Station BS_A

Magenta®

Base Station BS_B

Cellular-connected drones Handovers @ 10m

360

Cellular-connected drones Handovers @ 150m

Cellular Connected drones: Drone Small Cell

Drone Small Cell (DSC) Drone as LTE-WiFi relay

LTE to UAV, Wi-Fi to user LTE

Drone Small Cell (DSC) Hardware setup

UniFi UAP-AC-m 802.11 ac Wi-Fi AP, 2x2 dual band

Huawei E3372 LTE modem (LTE Cat4)

Samsung S20 5G: 802.11ac with VHT80 MU-MIMO; LTE Cat20 with 4x4MIMO

Drone Small Cell (DSC) RSSI measurements

DSC latency results

average latency : LTE-direct: 54ms DSC: 53.7ms
DSC provides better latency consistency (low jitter)

Cellular Connected drones: Collision Avoidance

Collision avoidance In a cellular-connected swarm of drones

Multiple drones fly in a "free flight" zone, clear of obstacles and are connected via a **5G network**

distributed (on-board) collision avoidance path planning algorithm based on potential fields

each drone **attracted** by its target and **repelled** by other drones

Collision avoidance in a swarm of drones Scalability of communication

interactions in centralized architecture: quadratic increase (with neighbour count)

interactions for D2D: linear increase (with swarm size)

payload data: ~3.1 kbit/s per drone, at an update rate of 10 Hz

(a) position

(b) velocity	(b) י	elocity
--------------	-------	---------

Content	Size (Byte)	Content	Size (Byte)
Position	24	Linear	24
Orientation	32	Angular	24
Headers	135	Headers	135
Total	191	Total	183

Demo Video: Collision avoidance (8 drones)

Lakeside Labs

Mixed real/virtual swarm environment Architecture

Playground

edge server @B08

facilitates scalable evaluations and demonstrations

Hybrid demo: Ground Control Station

Hybrid demo: 360° video stream

24

Communication in Swarms Use Case Presentation

Kontakt:

DI Dr. Christian Raffelsberger E: raffelsberger@lakeside-labs.com T: +43 463 287044 77

References

- S. Hayat, C. Bettstetter, A. Fakhreddine, R. Muzaffar, and D. Emini, "An experimental evaluation of LTE-A throughput for drones," in Proc. ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (DroNet), (Seoul, Korea), pp. 3–8, June 2019.
- A. Fakhreddine, C. Bettstetter, S. Hayat, R. Muzaffar, and D. Emini, "Handover challenges for cellularconnected drones," in Proc. ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (DroNet), (Seoul, Korea), pp. 9–14, June 2019.
- R. Muzaffar, C. Raffelsberger, A. Fakhreddine, J. López Luque, D. Emini, and C. Bettstetter, "First experiments with a 5G-connected drone," in Proc. ACM Workshop on Micro 17 Aerial Vehicle Networks, Systems, and Applications (DroNet), (Toronto, Canada), June 2020.
- A. Stornig, A. Fakhreddine, H. Hellwagner, P. Popovski, and C. Bettstetter, "Video Quality and Latency for UAV Teleoperation over LTE: A Study with ns3," in IEEE Vehicular Technology Conf. (VTC), online conference, April 25–28, 2021.
- I. Donevski, C. Raffelsberger, M. Sende, A. Fakhreddine, J. J.Nielsen, "An Experimental Analysis on Drone-Mounted Access Points for Improved Latency-Reliability," in Proc. ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (DroNet), (Online), June 2021.
- A. Fakhreddine, C. Raffelsberger, M. Sende, C. Bettstetter, "Experiments on Drone-to-Drone Communication with Wi-Fi, LTE-A, and 5G", To appear in Proc. IEEE Globecom Workshops (Dec 2022)

Backup Slides

Application areas for (swarms of) drones

Delivery of goods

Connectivity

Cellular drone measurement tool (CDMT)

- Received power (RSRP) •
- Received quality (RSRQ) •
- Signal-to-noise ratio (RSSNR) •
- Channel number (EARFCN) •
- Cell identifier and • neighboring cell information
- Throughput (UDP/TCP) •
- Latency •
- **GPS** coordinates •

Available for academic use: www.lakeside-labs.com/cdmt

360° video streaming from a drone

gstreamer-Pipeline for real-time transmission (**delay** <1s) (H264, 2K, ~45Mbit/s, Real-time Streaming Protocol over UDP/IP)

Ricoh Theta 360° camera

UAV Hardware/Software

flight controller

communication

Cellular-connected drones Drone-to-Drone evaluation (4G/5G/Wi-Fi)

5G NSA Evaluation Setup

Cellular-connected drones Real-world evaluation (5G NSA)

Magenta[®]

5G NSA Results

Fyneriment	Link	Throughput				Time	Handovers
		maximum	mean	stddev	5G mean	in 5G	
Liftoff	DL	742 Mbit/s	345 Mbit/s	244 Mbit/s	387 Mbit/s	67 %	1
	UL	64 Mbit/s	44 Mbit/s	8 Mbit/s	39 Mbit/s	93 %	2
Horizontal flight at 30 m	DL	713 Mbit/s	388 Mbit/s	273 Mbit/s	618 Mbit/s	57 %	2
	UL	51 Mbit/s	46 Mbit/s	2 Mbit/s	46 Mbit/s	100 %	0
Horizontal flight at 100 m	DL	707 Mbit/s	354 Mbit/s	306 Mbit/s	644 Mbit/s	53 %	3
	UL	67 Mbit/s	47 Mbit/s	8 Mbit/s	42 Mbit/s	66 %	5

LTE Advanced Results: Handover

2. Flying at 50 m
DSC Latency Results

average latency: 54ms (LTE-direct) vs 53.7ms (DSC)

True Autonomy

Upgrade Your Drone for Big Outdoor Data Collection

Current limits to drone applications are...

...GPS loss, prone to hackers when high precision is needed ...**Unknown & uneven** terrain for applications close to ground

...Indoors & confined spaces

Our goals...

...to provide reliable supported flight and autonomy

A **plug-in** upgrade package to automate **any drone** from...

...**take-off**, to **flight** to **landing**, **GPS-free** without any manual operation, ...

...saving operation costs, resources and increasing revenue.

The main component – Sensor Fusion

The key to autonomy - **reliable** and **robust knowledge** of the own **state** ...to provide **reliable supported flight** and **autonomy**

Control of Oetworked

Brommer, C., Jung, R., Steinbrener, J. & Weiss, S. (2021) MaRS: A Modular and Robust Sensor-Fusion Framework, *IEEE Robotics and Automation Letters*, Volume 6 (patent pending) Ladinig, P., Rinner, B., Weiss, S. (2021): Time and Energy Optimized Trajectory Generation for Multi-Agent Constellation Changes. *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*

Modular Multi-Sensor Fusion

Fast and statistically robust handling of out-of-order-updates

Re-computation of uncertainties leads to computation spike

Potential Benefit of 5G: offload expensive calculations

Allak et al. "Covariance Pre-Integration for Delayed Measurements in Multi Sensor Fusion", IROS19. Allak et al. "Consistent Covariance Pre-Integration for Invariant Filters with Delayed Measurements", IROS20

Oontrol of

etworked

vstems

Robust Vision Frontend - Features

Pose estimation based on features: new strategies for feature selection

ontrol of

worked

vstems

Select feature trails with large cumulative parallax and even distribution of parallax

- No persistent features required
- Works inherently for zero and fast motion without motion case handling
- Real-time capable

Potential Benefit of 5G: offload expensive calculations

Robust Vision Frontend - Dense

Pose estimation based on pixel intensities

ontrol of

tworked

Systems

Fully Dense Direct Filter for Low-Textured Environments with Smooth Gradients

- Takes all pixels into account
- Predicts both state and depth for each pixel
- Works in low-textured environment with smooth gradients

Potential Benefit of 5G: offload expensive calculations

Geometric and Inertial Self-Calibration

Discovery of on mass distribution and optimal trajectory calculation

Extension of the set of self-calibration states with geometric and inertial properties of the mobile robot

- Mass and center of mass
- Moment of inertia

Oontrol of

• Extrinsic misalignment between system body frame and sensors

With observability aware trajectory optimization

Preiss, Hausman, Sukhatme, and Weiss, Trajectory Optimization for Self-Calibration and Navigation, RSS 2017 Systems – Böhm, Brommer, Hardt-Stremayr, and Weiss, Combined System Identification and State Estimation for a Quadrotor UAV, ICRA2021 Potential Benefit of 5G: offload expensive calculations

Collaborative State Estimation

Concurrent state estimation of multiple Drones

Extend multi-sensor fusion framework for collaborative state estimation

- Decentraled implementation
- Inertial and camera/GNSS sensor
- Overlap detection

Oontrol of

Potential Benefits of 5G: offload expensive calculations

fast communication between drones

centralized planning

Jung, Böhm & Weiss, Decentralized Collaborative State Estimation for Aided Inertial Navigation, ICRA 2020

ystems J Ladinig, Rinner, Weiss, Time and Energy Optimized Trajectory Generation for Multi-Agent Constellation Changes, ICRA 2021

Use Case – Forest iMate

Autonomous flight and data collection between trees

AAU-CNS: Vision-based, autonomous navigation Incl. obstacle avoidance (sub-canopy)

Potential Benefit of 5G: fast data upload

Use Case – Bugwright 2

Autonomous robotic inspection of ship hulls

AAU-CNS: collaborative state estimation

Horizon 2020 https://www.bugwright2.eu/ Potential Benefits of 5G: fast data upload remote drone contro

"Good enough" for research is not "good enough" for industrial applications

Current status: software robustification

Next step: Pilot project

Alexander Hardt-Stremayr <u>alexander.hardt-stremayr@avemoy.com</u> Tel: +43 650 240 7985 Univ.-Prof. Dr. DI Stephan Weiss stephan.weiss@aau.at

Tel: +43 463 2700 3571