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Overview

➤ Many problems have a special structure – we will see mainly 3 different structures of data
(regression/classification and the unsupervised setting).

➤ In the supervised setting we are primarily interested in a certain quantity y. There are
various names for y: response (variable), dependent variable, target (variable), output
(variable), outcome, . . .

➤ Unfortunately, this quantity y is often difficult to measure, e.g. because its measurement is
cost-, time- or labour-intensive. In some cases it’s even impossible to measure (e.g.
tomorrow’s stock exchange price (Börsenkurs), tomorrow’s precipitation in Graz, . . .).

➤ The idea is to measure one or (typically) more so-called predictors xj , which are comparably
easy/cheap/fast to measure and which can be used to predict y with a so-called prediction
model. If we have a single predictor, we will simply call it x, if there are more than 1, we
give them the names x1, x2, . . .. Alternative names for the xj are independent variables,
inputs, covariates, features, attributes, . . .

➤ Let’s look at some examples . . .

2 / 34



Example – Handwritten Digits

Handwritten digits scanned from U.S. postal envelopes (example from ESL). For the human eye
it is (in most cases) easy to classify such an image.

The features xj in our example: we put a
16× 16 pixel grid over each handwritten digit
and determine the level of blackness (ranging
from −1 for white to +1 for black;
Graustufen). So each pixel x1, x2, . . . , x256

has an associated number in the interval
[−1,+1].

x1 x2 x16

x255

x256
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Example – Handwritten Digits

In R these data are available in the package ElemStatLearn (Book Elements of Statistical
Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman) and can be accessed via

# package must be installed first

require(ElemStatLearn)

data(zip.train)

# structure of data

class(zip.train)

[1] "matrix" "array"

dim(zip.train)

[1] 7291 257

We see that the digit training data are a matrix of dimension 7291× 257 (see also the help page
for some information). Each of the n = 7291 rows represents an
object/observation/case/instance (here a case is a single handwritten digit) – first the number
(0 to 9), then the 256 greyscale values.

# e.g. let’s have a look at the 18th case

zip.train[18, 1:15]

[1] 8.000 -1.000 -1.000 -1.000 -1.000 -1.000 -0.992 -0.385 -0.143 0.462

[11] 1.000 0.975 0.092 -0.473 -0.968
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Example – Handwritten Digits

The function zip2image() (together with R’s image() function) can be used for plotting (i.e.
the other way round from numerical data in a matrix to images):

# plot the previous sign

image(zip2image(zip = zip.train, line = 18), col = gray((256:0)/256),

xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n")

[1] "digit 8 taken"
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Supervised Setting – Classification

In supervised learning we have a response y, which we want to model using the predictors
x1, x2, . . . , xp. We need a so-called training set with a number of n instances, for which both
the x- and y-values are known.

X y

1 2 ... p
Features/Variables

1
2

n
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bs
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ns

Observation ii

In this example, y represents the class Zero, One, Two, . . ., Nine (i.e. the response is a
categorical and not a numeric variable). So we have a classification problem.
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Example – Handwritten Digits

We will build e.g. a random forest model for demonstration purposes.

➤ First we load the R packages and the data

# first we load the package(s) and data

require(ElemStatLearn)

data(zip.train)

# package for Random Forest model

require(ranger)

➤ Now we build a classification model with the ranger() function

# random forest classification model

rf_model <- ranger(y ~ ., data = zip.train, seed = 123, num.trees = 1000)

➤ Usually we are interested in the performance of our model, i.e. we want to know how
accurate the model can predict the digit based on its greyscale image. In a first try we could
apply the model to the x-data (i.e. the numeric values of the grayscale pixels) of our training
set which gives us a predicted y for each case. We will use the notation ŷ for the
predicted/estimated value (here a class membership).

# make predictions with the random forest model

preds_training <- predict(rf_model, data = zip.train)
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Example – Handwritten Digits

➤ Let’s look at the first entries of these predictions:

# compare predictions with the truth

head(cbind(observed = zip.train[, "y"],

predicted = preds_training$predictions), n = 10)

observed predicted

[1,] 7 7

[2,] 6 6

[3,] 5 5

[4,] 8 8

[5,] 4 4

[6,] 7 7

[7,] 4 4

[8,] 2 2

[9,] 1 1

[10,] 2 2

No classification errors in the first 10 cases . . .
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Example – Handwritten Digits

A so-called confusion matrix gives a good summary of the model results

# confusion matrix

table(true_class = zip.train[, "y"],

predicted_class = preds_training$predictions)

predicted_class

true_class 0 1 2 3 4 5 6 7 8 9

0 1194 0 0 0 0 0 0 0 0 0

1 0 1005 0 0 0 0 0 0 0 0

2 0 0 731 0 0 0 0 0 0 0

3 0 0 0 658 0 0 0 0 0 0

4 0 0 0 0 652 0 0 0 0 0

5 0 0 0 0 0 556 0 0 0 0

6 0 0 0 0 0 0 664 0 0 0

7 0 0 0 0 0 0 0 645 0 0

8 0 0 0 0 0 0 0 0 542 0

9 0 0 0 0 0 0 0 0 0 644

Interpretation: There are 658 observations with the true class 3 (sum of all entries in the 3-row)
and all of them were correctly classified as a 3.

Are we happy with this result? It seems that we have found a perfect classification model, which
always predicts the correct class? What could be the problem, if we evaluate our (classification)
model this way?
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Example – Handwritten Digits

Building and evaluating (i.e. assessing its performance) a model on the same data set (i.e. with
the same observations) is problematic. We get a more realistic estimate of the prediction error, if
we apply our model on a new and independent data set (also known as a test set), so far unseen
by the model.

In many cases such an independent test set is not available (=⇒ data splitting) – here we are
lucky and have such a test set in the R object zip.test:

# load data; very large test set

data(zip.test)

dim(zip.test)

[1] 2007 257

# prepare in the same way as training set

colnames(zip.test) <- c("y", paste("x_", 1:256, sep = ""))

zip.test <- as.data.frame(zip.test)

zip.test[, "y"] <- as.factor(zip.test[, "y"])

# apply model to test set

preds_test <- predict(rf_model, data = zip.test)
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Example – Handwritten Digits

Also for the test set the true outcomes are known for all cases. So we can look at the confusion
matrix

# confusion matrix for test set

(cm_test <- table(true_class = zip.test[, "y"],

predicted_class = preds_test$predictions))

predicted_class

true_class 0 1 2 3 4 5 6 7 8 9

0 353 0 2 0 2 0 1 0 0 1

1 0 255 0 0 4 0 4 1 0 0

2 2 0 181 5 2 1 1 1 5 0

3 0 0 4 149 0 10 0 0 3 0

4 0 2 4 0 188 0 2 0 0 4

5 3 0 0 5 1 147 0 0 1 3

6 0 0 3 0 2 3 160 0 2 0

7 0 0 1 0 6 0 0 137 2 1

8 3 0 4 3 0 3 0 0 149 4

9 0 2 0 0 4 0 0 0 3 168

Interpretation: There are 166 images representing the number/class 3 (4 + 149 + 10 + 3) and
most (149), but not all were correctly classified. On the other hand, there are 13 (5 + 5 + 3)
images representing a number/class other than 3, but which were wrongly classified as 3.
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Example – Handwritten Digits

➤ Assessing the overall quality with the misclassification rate in the test set.

number of misclassified objects

total number of objects

# misclassification rate in percent

100 * (1 - sum(diag(cm_test)) / sum(cm_test))

[1] 5.979073

gives us about 6% misclassification rate. What does this number tell us?

➤ The contrary measure is the accuracy (proportion of correctly classified elements):

number of correct classification

total number of objects
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Example – Handwritten Digits

Some examples of handwritten digits, which were incorrectly classified (in total 120
misclassifications):

[1] "digit 8 taken"

[1] "digit 4 taken"

[1] "digit 7 taken"
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The above digits shall represent the numbers 8, 4 and 7, but were classified as 5, 1 and 9.
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Example – Handwritten Digits

We can even have a closer look – a random forest model consists of a large number (here: 1000,
the argument num.trees in the ranger() call) of trees. Each tree is a classification model on its
own. What does each tree predict?
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Example – Handwritten Digits

Some of the correctly classified examples . . .
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Supervised Setting – Classification vs. Regression

➤ In the previous example we had the following setup

X y

1 2 ... p
Features/Variables
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with some predictors xj (can be numeric or categorical, arranged in columns of X) and a
categorical response (classification problem).

➤ If we have a numeric response variable y, we have a regression problem.
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Example – We rent a flat . . .

➤ We want to rent a flat and have an offer for 800 Euro. Is this a fair price?

➤ Of course the available information is clearly not enough to make a statement – where is the
flat (which town, which district), how big is the flat, does it have furniture inside, . . .).

➤ So, again with some more details: the flat has 80m2 – is this a fair price?

➤ Our strategy could be: we take a set of flats, of which we know their size and their price.
We make the assumption that the larger the flat, the more it will cost (on average).

➤ Note: now we have a numeric quantity y, which we want to model (still it is a supervised
learning problem).
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Example – We rent a flat . . .

Fortunately, we have an appropriate data set (München, 2015) with n ≈ 3000.

# Einlesen der korrigierten Daten

mieten <- read.table("../../Angewandte Statistik/Daten/Mieten/bearbeitete_Daten/Mietspiegel_Muenchen.csv",

header = TRUE, sep = " ")

# erste paar Zeilen

head(mieten, n = 10)

nm nmqm wfl rooms bj bez wohngut wohnbest ww0 zh0 badkach0 badextra kueche

1 608.40 12.67 48 2 1957.5 Untergiesing nein nein nein nein ja nein nein

2 780.00 13.00 60 2 1983.0 Bogenhausen ja nein nein nein ja nein ja

3 822.60 7.48 110 5 1957.5 Obergiesing nein nein nein ja ja ja nein

4 500.00 8.62 58 2 1957.5 Schwanthalerhoehe nein nein nein nein ja nein ja

5 595.00 8.50 70 3 1972.0 Aubing-Lochhausen-Langwied nein nein nein nein nein nein nein

6 960.00 11.85 81 3 2006.5 Schwanthalerhoehe nein nein nein nein ja nein nein

7 1120.00 11.55 97 3 2000.5 Hadern ja nein nein nein ja ja ja

8 685.00 13.70 50 2 1972.0 Maxvorstadt ja nein nein nein nein nein ja

9 767.50 10.81 71 3 1983.0 Untergiesing nein nein nein nein ja nein nein

10 565.68 7.44 76 3 1957.5 Untergiesing nein nein nein ja ja ja nein

Focus on the different types of variables we have (Datentypen). Our target variable is nm
(Nettomiete).
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Example – We rent a flat . . .

➤ In a very simple analysis, we could take all the flats with exactly 80m2 and look at the
corresponding rents.

# alle Wohnungen mit 80 m^2

summary(mieten[mieten$wfl == 80, "nm"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

330.0 693.7 792.5 804.3 912.0 1560.0

➤ We see that on average, a flat with 80m2 costs 804 Euro, so our 800 Euro seem to be a
reasonable price.

➤ What could we do, if there is no flat with exactly 80m2 in our data set? What could we do,
if we also want to consider other varialbes/factors, which clearly determine the price?
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Example – We rent a flat . . .

How does the Nettomiete depend on the size of the flat (Variable wfl - Wohnfläche)?

plot(x = mieten$wfl, y = mieten$nm, pch = 19, col = rgb(0,0,1,0.2),

xlab = "Wohnflaeche [m2]", ylab = "Nettomiete [Euro]", main = "Mietspiegel Muenchen")
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How would we classify the relationship? What about the outliers (flat with 300m2)?
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Example – We rent a flat . . .

➤ We could build a linear regression model of the form

nm = β0 + β1 · wfl+ β2 · bj+ . . .+ βp · bez

➤ Note: It is possible to include qualitative as well as quantitative predictors (variables) in such
a model

# wir entfernen den/die Ausreisser

mieten2 <- mieten[mieten$wfl <= 210, ]

# Modell mit 5 Variablen

lin_mod <- lm(nm ~ wfl + rooms + wohngut + badextra + zh0, data = mieten2)
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Example – We rent a flat . . .

➤ We might want to ask: how good is our model – we can obtain numerical quantities or use
plots.

summary(lin_mod)

Call:

lm(formula = nm ~ wfl + rooms + wohngut + badextra + zh0, data = mieten2)

Residuals:

Min 1Q Median 3Q Max

-812.64 -106.72 3.09 103.79 1240.61

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.3923 21.4727 3.371 0.000757 ***

wfl 11.7537 0.2601 45.188 < 2e-16 ***

rooms -63.0117 6.6273 -9.508 < 2e-16 ***

wohngutnein -75.8218 7.3161 -10.364 < 2e-16 ***

badextranein -60.8802 11.0944 -5.487 4.41e-08 ***

zh0nein 125.4160 13.9939 8.962 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 192.3 on 3056 degrees of freedom

Multiple R-squared: 0.6466,Adjusted R-squared: 0.6461

F-statistic: 1118 on 5 and 3056 DF, p-value: < 2.2e-16
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Example – We rent a flat . . .

➤ Our model will make predictions ŷ and we know the actual values y (observed).

➤ From a good model we will expect that predicted and observed will be close. A measure for
the average prediction error is the root mean squared error:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

➤ In our case it is
sqrt(mean((mieten2$nm - predict(lin_mod))^2))

[1] 192.1558

So we can predict the Nettomiete with an average accuracy of ≈ 190Euro.
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Example – We rent a flat . . .

We can also plot the observed values versus the predicted values.

plot(x = predict(lin_mod), y = mieten2$nm, pch = 19, col = rgb(1,0,0,0.2),

xlim = c(0, 3200), ylim = c(0, 3200), xlab = "predicted price", ylab = "observed price")

abline(a = 0, b = 1, lwd = 2)
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How can we use such a model and which data do we need?

24 / 34



PCA with R – wines data

In many situations we just have some data X, but no corresponding y we want to predict. Let’s
look at an example – the wines data set (contained in the R package kohonen):

# load the package/data

require(kohonen)

data(wines)

# dimension of data

dim(wines)

[1] 177 13

# what variables do we have

colnames(wines)

[1] "alcohol" "malic acid" "ash" "ash alkalinity" "magnesium"

[6] "tot. phenols" "flavonoids" "non-flav. phenols" "proanth" "col. int."

[11] "col. hue" "OD ratio" "proline"
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PCA with R – wines data

# die ersten Zeilen

head(wines[, 1:10])

alcohol malic acid ash ash alkalinity magnesium tot. phenols flavonoids non-flav. phenols proanth col. int.

[1,] 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38

[2,] 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68

[3,] 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80

[4,] 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32

[5,] 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75

[6,] 14.39 1.87 2.45 14.6 96 2.50 2.52 0.30 1.98 5.25
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Unsupervised Learning

Questions and problems we might have regarding such data:

➤ Are there any groups/clusters among the data. We might define a group as chemically
similar objects (which poses the next question: what does chemically similar mean?)

➤ Are there any outlying observations (outliers) not fitting to any of the (eventually)
discovered groups?

➤ How can we visualize such data? What might be a problem with univariate or bivariate
plots (such as histograms/boxplots or 2D scatterplots)?

➤ Assuming that we have found some groups in the data and we have a completely new
observation – to which group does this observation belong to?

➤ . . .
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Unsupervised Learning – wines data

➤ For n = 177 wines (objects) the data frame contains the results of chemical analyses. Wines
were grown in the same region in Italy (Piedmont), but originate from 3 different cultivars
(German: Sorte) – Barolo, Grignolino and Barbera. They are given in the object
vintages:

# cultivars of wine

head(vintages)

[1] Barolo Barolo Barolo Barolo Barolo Barolo

Levels: Barbera Barolo Grignolino

# how many observations from each cultivar

table(vintages)

vintages

Barbera Barolo Grignolino

48 58 71

➤ We will not use this qualitative (factor) variable for calculating the PCA (just for e.g. coloring
the data points).
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Unsupervised Learning – wines data
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Unsupervised Learning – wines data

➤ We perform a PCA (Principal Component Analysis) with the wines data set (x = wines).

# PCA with wines data

pca_wines <- prcomp(x = wines, center = TRUE, scale. = TRUE, retx = TRUE)

➤ What happens is that the high-dimensional data are projected onto a lower-dimensional
space (which is more accessible, i.e. it can be plotted).
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PCA with R

Score- and loading plots can be obtained with the corresponding matrices in the items x (scores)
and rotation (loadings), e.g. a plot of the scores/loadings of PC2 versus PC1 (code on the next
slide):
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Unsupervised Learning

The general setup in unsupervised situations: X of dimension n× p. p variables (x1, x2, . . . , xp)
measured on n objects.
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Regression, Classification, Clustering

Supervised

➤ predict a response y with predictors xj

➤ classification: y is qualitative (categorical)

➤ regression: y is quantitative (numeric)
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MLR, PCR, PLS, Lasso, Ridge Regression,
Elastic Net, Trees, Random Forests, . . .
(regression) and LDA, QDA, kNN, SVM, . . .

Unsupervised

➤ discover interesting structure in data

➤ no y to predict

➤ often part of EDA (exploratory data analysis)

X

1 2 ... p
Features/Variables

1
2

n

O
bs

er
va

tio
ns

Observation ii

PCA, MDS, Factor Analysis, Kohonen maps,
Hierarchical clustering, model based
clustering, kmeans, . . .
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