

Project "FairMillData2"

Analysis of Fair Milling Dataset

E. Hagendorfer*, L. Hanna*, M. Mücke*, T. Klünsner*, S. Trabesinger**, F. Haas**

* Materials Center Leoben Forschung GmbH, Leoben, Austria** Institute of Production Engineering, Graz University of Technology, Austria

Smart Factory, Graz, 25.6.2023

Agenda

- Introduction
- Results of Data Analysis
 - End Milling
 - Plunge Milling
 - Slot Milling
 - Face Milling
- Summary & Outlook

Agenda

Introduction

- Results of Data Analysis
 - End Milling
 - Plunge Milling
 - Slot Milling
 - Face Milling
- Summary & Outlook

Analysis of FAIR Milling Dataset

- In February 2023, a milling dataset according to the FAIR-principles was recorded @smartfactory.
- Dataset made available: <u>https://zenodo.org/records/7753181 (188</u> views till now)
- This presentation summarizes the results of data analysis.

FAIR Principles

- FAIR principles aim at maximizing effective (re)use of acquired datasets
 - → [Wilkinson2016], <u>https://www.go-fair.org/fair-principles/</u>

Publish dataset on Zenodo.org

- Receives DOI (digital object identifier)
- Funded by European Commission

Adding relevant metadata:

- use precise & understandable language
- are richly described with a plurality of accurate and relevant attributes

→ Findable → Accessible

 \rightarrow Interoperable

Documented in Schmidt et al.: "Seamless Data Integration in the CAM-NC Process Chain in a Learning Factory", January 2020, Procedia Manufacturing 45:31-36, DOI:10.1016/j.promfg.2020.04.038

- Software used: "Analyze MyWorkpiece /Capture4Analysis"
 "Capture4Analysis is a SINUMERIK Edge application which enables the user to acquire process data from the SINUMERIK CNC controller, store it locally on the EDGE device and provide it to other EDGE applications and also to external IT systems"
- Data is exported and processed by MCL in Python

	Name	Туре	Axis	Address
61	CommandedSpeed	DOUBLE	C1	CMD_SPEED 6
62	TorqueFeedForward	DOUBLE	X1	TORQUE_FFW 1
63	TorqueFeedForward	DOUBLE	Y1	TORQUE_FFW 2
64	TorqueFeedForward	DOUBLE	Z1	TORQUE_FFW 3
65	TorqueFeedForward	DOUBLE	B1	TORQUE_FFW 4
66	TorqueFeedForward	DOUBLE	SP1	TORQUE_FFW 5
67	TorqueFeedForward	DOUBLE	C1	TORQUE_FFW 6
68	Encoder1Position	DOUBLE	X1	ENC1_POS 1
69	Encoder1Position	DOUBLE	Y1	ENC1_POS 2
70	Encoder1Position	DOUBLE	Z1	ENC1_POS 3
71	Encoder1Position	DOUBLE	B1	ENC1_POS 4
72	Encoder1Position	DOUBLE	SP1	ENC1_POS 5
73	Encoder1Position	DOUBLE	C1	ENC1_POS 6
74	Encoder2Position	DOUBLE	X1	ENC2_POS 1
75	Encoder2Position	DOUBLE	Y1	ENC2_POS 2
76	Encoder2Position	DOUBLE	Z1	ENC2_POS 3
77	Encoder2Position	DOUBLE	B1	ENC2_POS 4
78	Encoder2Position	DOUBLE	SP1	ENC2_POS 5
79	Encoder2Position	DOUBLE	C1	ENC2_POS 6
80	Load	DOUBLE	X1	LOAD 1
81	Load	DOUBLE	Y1	LOAD 2
82	Load	DOUBLE	Z1	LOAD 3
83	Load	DOUBLE	B1	LOAD 4
84	Load	DOUBLE	SP1	LOAD 5
85	Load	DOUBLE	C1	LOAD 6
86	ActualAxisPosition	DOUBLE	X1	ENC_POS 1
87	ActualAxisPosition	DOUBLE	Y1	ENC_POS 2
88	ActualAxisPosition	DOUBLE	Z1	ENC_POS 3
89	ActualAxisPosition	DOUBLE	B1	ENC_POS 4
90	ActualAxisPosition	DOUBLE	SP1	ENC_POS 5
91	ActualAxisPosition	DOUBLE	C1	ENC_POS 6

Project "FairMillData2"

Dataset Structure

 \rightarrow Well-structured metadata is prerequisite for efficient data analysis and portable results.

- Design of experiments according to problem statement (e.g. Milling of slots with varying parameters)
- Dataset contains all information required for efficient data analysis (ensured by data acquisition workflow)

Channels Used for Analysis

•	Analysis of
	poistional accuracy
	via position
	channels & desired
	position channels
	and control
	difference channels

 Analysis of energy consumption via power channels

	Name	Туре	Axis	Address		Name	Туре	Axis	Address		Name	Туре	Axis	Address
0	Cycle	INTEGER	CYCLE	CYCLE	31	ControlPos	DOUBLE	X1	CTRL_POS 1	61	CommandedSpeed	DOUBLE	C1	CMD_SPEED 6
1	ControlDiff2	DOUBLE	X1	CTRL_DIFF2 1	32	ControlPos	DOUBLE	Y1	CTRL_POS 2	62	TorqueFeedForward	DOUBLE	X1	TORQUE_FFW 1
2	ControlDiff2	DOUBLE	Y1	CTRL_DIFF2 2	33	ControlPos	DOUBLE	Z1	CTRL_POS 3	63	TorqueFeedForward	DOUBLE	Y1	TORQUE_FFW 2
3	ControlDiff2	DOUBLE	Z1	CTRL_DIFF2 3	34	ControlPos	DOUBLE	B1	CTRL_POS 4	64	TorqueFeedForward	DOUBLE	Z1	TORQUE_FFW 3
4	ControlDiff2	DOUBLE	B1	CTRL_DIFF2 4	35	ControlPos	DOUBLE	SP1	CTRL_POS 5	65	TorqueFeedForward	DOUBLE	B1	TORQUE_FFW 4
5	ControlDiff2	DOUBLE	SP1	CTRL_DIFF2 5	36	ControlPos	DOUBLE	C1	CTRL_POS 6	66	TorqueFeedForward	DOUBLE	SP1	TORQUE_FFW 5
6	ControlDiff2	DOUBLE	C1	CTRL_DIFF2 6	37	VelocityFeedForward	DOUBLE	X1	VEL_FFW 1	67	TorqueFeedForward	DOUBLE	C1	TORQUE_FFW 6
7	Torque	DOUBLE	X1	TORQUE 1	38	VelocityFeedForward	DOUBLE	Y1	VEL FFW 2	68	Encoder1Position	DOUBLE	X1	ENC1_POS 1
8	Torque	DOUBLE	Y1	TORQUE 2	20	Velecity Feed Ferry and		71		69	Encoder1Position	DOUBLE	Y1	ENC1_POS 2
9	Torque	DOUBLE	Z1	TORQUE 3	39	velocityreedForward	DOORLE	21	VEL_FFVV 3	70	Encoder1Position	DOUBLE	Z1	ENC1_POS 3
10	Torque	DOUBLE	B1	TORQUE 4	40	VelocityFeedForward	DOUBLE	B1	VEL_FFW 4	71	Encoder1Position	DOUBLE	B1	ENC1 POS 4
11	Torque	DOUBLE	SP1	TORQUE 5	41	VelocityFeedForward	DOUBLE	SP1	VEL_FFW 5	72	Encoder1Position	DOUBLE	SP1	ENC1 POS 5
12	Torque	DOUBLE	C1	TORQUE 6	42	VelocityFeedForward	DOUBLE	C1	VEL_FFW 6	73	Encoder1Position	DOUBLE	C1	ENC1_POS 6
13	CommandedAxisPosition	DOUBLE	X1	DES_POS 1	43	Power	STRING	X1	POWER 1	74	Encoder2Position	DOUBLE	X1	ENC2_POS 1
14	CommandedAxisPosition	DOUBLE	Y1	DES_POS 2	44	Power	STRING	Y1	POWER 2	75	Encoder2Position	DOUBLE	Y1	ENC2_POS 2
15	CommandedAxisPosition	DOUBLE	Z1	DES POS 3	45	Power	STRING	Z1	POWER 3	76	Encoder2Position	DOUBLE	Z1	ENC2_POS 3
16	CommandedAxisPosition		B 1		46	Power	STRING	B1	POWER 4	77	Encoder2Position	DOUBLE	B1	ENC2_POS 4
10				DE3_F03 4	47	Power	STRING	SP1	POWER 5	78	Encoder2Position	DOUBLE	SP1	ENC2_POS 5
17	CommandedAxisPosition	DOUBLE	SP1	DES_POS 5	48	Power	STRING	C1	POWER 6	79	Encoder2Position	DOUBLE	C1	ENC2_POS 6
18	CommandedAxisPosition	DOUBLE	C1	DES_POS 6	49	CountourDeviation	DOUBLE	X1	CONT_DEV 1	80	Load	DOUBLE	X1	LOAD 1
19	Current	DOUBLE	X1	CURRENT 1	50	CountourDeviation	DOUBLE	Y1	CONT_DEV 2	81	Load	DOUBLE	Y1	LOAD 2
20	Current	DOUBLE	Y1	CURRENT 2	51	CountourDeviation	DOUBLE	Z1	CONT_DEV 3	82	Load	DOUBLE	Z1	LOAD 3
21	Current	DOUBLE	Z1	CURRENT 3	52	CountourDeviation	DOUBLE	B1	CONT_DEV 4	83	Load	DOUBLE	B1	LOAD 4
22	Current	DOUBLE	B1	CURRENT 4	53	CountourDeviation	DOUBLE	SP1	CONT_DEV 5	84	Load	DOUBLE	SP1	LOAD 5
23	Current	DOUBLE	SP1	CURRENT 5	54	CountourDeviation	DOUBLE	C1	CONT_DEV 6	85	Load	DOUBLE	C1	LOAD 6
24	Current	DOUBLE	C1	CURRENT 6	55	Synchronuous Action variable	INTEGER		A_DBD 0	86	ActualAxisPosition	DOUBLE	X1	ENC_POS 1
25	ControlDiff	DOUBLE	X1	CTRL_DIFF 1	56	CommandedSpeed	DOUBLE	X1	CMD SPEED 1	87	ActualAxisPosition	DOUBLE	Y1	ENC_POS 2
26	ControlDiff	DOUBLE	Y1	CTRL_DIFF 2	57	CommandedSpeed	DOUBLE	Y1	CMD SPEED 2	88	ActualAxisPosition	DOUBLE	Z1	ENC_POS 3
27	ControlDiff	DOUBLE	Z1	CTRL_DIFF 3	58	CommandedSpeed	DOUBLE	Z1	CMD SPEED 3	89	ActualAxisPosition	DOUBLE	B1	ENC_POS 4
28	ControlDiff	DOUBLE	B1	CTRL_DIFF 4	59	CommandedSpeed	DOUBLE	B1	CMD SPEED14	90	ActualAxisPosition	DOUBLE	SP1	ENC_POS 5
29	ControlDiff	DOUBLE	SP1	CTRL_DIFF 5	60	CommandedSpeed	DOUBLE	SP1	CMD SPEEDIS	91	ActualAxisPosition	DOUBLE	C1	ENC POS 6
30	ControlDiff	DOUBLE	C1	CTRL_DIFF 6				<i></i>						- '

m

Overview

	End Milling	Plunge Milling	Slot milling	Face Milling
Varied Parameters	Radial Depth a_e Axial Depth a_p	Plunging Strategy	Radial Depth a_e Axial Depth a_p Corner Velocity v_{EP}	Feed Rate v _f Cutting Speed v _c
Number of Experiments (Runs)	10	12	20	48
Tool	End mill (d = 10 mm)	End mill (d = 10 mm)	End mill (d = 10 mm)	Indexable Cutter (d = 80 mm)
Material		1.2083 (X42Cr 13)	Stainless Mold Steel	

- FairMillData: Four milling operations were performed using different parameters
- FairMillData2: Data analysis to study the effect of parameter variation on milling target quantities, e.g. energy consumption, positional accuracy.

Agenda

- Introduction
- Results of Data Analysis
 - End Milling
 - Plunge Milling
 - Slot Milling
 - Face Milling
- Summary & Outlook

End Milling

	End Milling	Plunge Milling	Slot milling	Face Milling
Varied Parameters	Radial Depth a_e Axial Depth a_p	Plunging Strategy	Radial Depth a_e Axial Depth a_p Corner Velocity v_{EP}	Feed Rate v _f Cutting Speed v _c
Number of Experiments (Runs)	10	12	20	48
Tool	End mill (d = 10 mm)	End mill (d = 10 mm)	End mill (d = 10 mm)	Indexable Cutter (d = 80 mm)
Material 1.2083 (X42Cr 13) Stainless Mold Steel				

Question:

How does radial depth of cut (a_e) compare to axial depth of cut (a_p) w.r.t. their effect on energy consumption and maximum power?

Experiment Overview

	v _c [m/min]	f _z [mm]	a _p [mm]	a _e [mm]	Material Removal Rate [cm ³ /min]	End mill ← d →		v _c [m/min]	f _z [mm]	a _p [mm]	a _e [mm]	Material Removal Rate [cm ³ /min]
Run 1	100	0,05	10	2	12,73	Ω/Ω	Run 6	100	0,05	2	10	12,73
Run 2	100	0,05	8	2	10,19	×	Run 7	100	0,05	2	8	10,19
Run 3	100	0,05	6	2	7,64	У ←○	Run 8	100	0,05	2	6	7,64
Run 4	100	0,05	4	2	5,09	2	Run 9	100	0,05	2	4	5,09
Run 5	100	0,05	2	2	2,55	Workpiece $a_p \leftarrow a_e$	Run 10	100	0,05	2	2	2,55
L		1			1	¥	L	1	1	1		

- 10 runs of end milling are performed
- For runs 1 to 5, a_p is varied while a_e is kept at a constant level
- For runs 6 to 10, a_e is varied while a_p is kept at a constant level

End Milling Strategy – Path Tool Center Point

Question:

How does radial depth of cut (a_e) compare to axial depth of cut (a_p) w.r.t. their effect on energy consumption and maximum power?

m

Comparison of Spindle-Power for all Operations

- Idle-power equal for all experiments $\rightarrow v_c$ and f_z
- · Power level decreases with lower tool immersion
- Anomalous peak during Idle-phase for $a_p = 2 \text{ mm}$, $a_e = 8 \text{ mm}$
- Delay for $a_p = 2 \text{ mm}$, $a_e = 2 \text{ mm}$

Comparison of Y-Position for all Operations

• Anomalies in spindle-power stem from interrupted / delayed change in y-position

End Milling – Energy Consumption

End mill

d

Varying a_p vs. Varying a_e : Effect on Energy Consumption

 Analysis for total energy consumption (sum of all power channels) in kWh.

ПП

• Maximum consumption for run 6:

 $a_p = 2 \text{ mm},$ $a_e = 10 \text{ mm}.$

- We compare runs with same material removal rate (MRR): 1-6, 2-7, 3-8....
- On average, increased *a_p* leads to higher energy consumption by 1.77% for the same material removal rate (MRR).

Workpiece

End Milling – Maximum Power

End mill

d

Varying a_p vs. Varying a_e : Effect on Maximum Power

 Analysis for maximum value (sum of all power channels) in W.

ПП

• Maximum power for run 6:

$$a_p = 2 mm,$$

 $a_p = 10 mm.$

- We compare runs with same material removal rate (MRR): 1-6, 2-7, 3-8....
- On average, increased a_e leads to higher maximum by 9.52% for the same material removal rate (MRR).
- Considerable difference for run 5 vs. run 10 despite identical parameters.

Workpiece

Box Plot Explanation

- Q1: lowest 25% of data are below this point
- Q3: lowest 75% of data are below this point
- Whisker: last point within 1.5 * IQR
- Outliers: Data points outside of 1.5 * IQR

 Runs 6 – 10 (a_e variation) show higher IQR and range between whiskers.

Run_5

Runs

 Also for run 5 vs. run 10 despite identical parameters

Run_4

Run_2

Run_1

Sun 3

Run_10

Run_9

'n

'n

Plunge Milling

	End Milling	Plunge Milling	Slot milling	Face Milling
Varied Parameters	Radial Depth a_e Axial Depth a_p	Plunging Strategy	Radial Depth a_e Axial Depth a_p Corner Velocity v_{EP}	Feed Rate v _f Cutting Speed v _c
Number of Experiments (Runs)	10	12	20	48
Tool	End mill (d = 10 mm)	End mill (d = 10 mm)	End mill (d = 10 mm)	Indexable Cutter (d = 80 mm)
Material		1.2083 (X42Cr 13)	Stainless Mold Steel	

• **Question:** What is the optimal immersion & finishing strategy w.r.t. energy consumption, machining time and maximum power for different hole depths?

Plunge Milling - Introduction

Removal [mm]

3

6

9

12

3

6

9

12

3

6

9

12

Run

1

2

3

4

5

6

7

8

9

10

11

12

ap

 a_{p1}

 a_{p2}

 a_{p3}

 a_{p4}

 a_{p1}

 a_{p2}

 a_{p3}

 a_{p4}

 a_{p1}

 a_{p2}

 a_{p3}

 a_{p4}

projon & Doughing Ch Experiment Overview - Comparison of Imn

Helical

Strategy

Vertical Immersion

Diagonal Immersion

Helical Immersion

n oi imme	ersion & Roughi	ng Strategies				
Immersion	Feed Rate v _f [mm/min]	Roughing	19	10		
Vertical	286,48	Circular				
Vertical	286,48	Circular				
Vertical	286,48	Spiral & Circular Finish		$\left(\begin{array}{c} 2 \end{array} \right)$	(3)	
Vertical	286,48	Spiral & Circular Finish				
Diagonal	286,48	Circular	5	6	7	
Diagonal	286,48	Circular				
Diagonal	286,48	Spiral & Circular Finish				
Diagonal	286,48	Spiral & Circular Finish	9	10	11	
Helical	286,48	Circular				
Helical	286,48	Circular			100	
Helical	286,48	Spiral & Circular Finish	•			

Spiral & Circular Finish

- 12 cylindrical pockets are milled into a workpiece with varying strategies
- Change in **immersion** (tool entering the workpiece) and **roughing** (extending the diameter from 10 to 18 mm)
 - Immersion is performed in a vertical, diagonal or helical manner •
 - Roughing is performed circular or spiral with a circular finish
- Reasoning behind experiment: low tool wear, practical, interesting with respect to energy consumption

286,48

Plunge Milling - Introduction

Plunge Milling Strategy – Path of Tool Center Point

• **Question:** What is the optimal immersion & finishing strategy w.r.t. energy consumption, machining time and maximum power for different hole depths?

TCP visualized from early to late stage.

Plunge Milling - Introduction

Comparison of Energy Consumption

- Visualization of spindle power channel
- Holes are divided into Idle, Immersion and Finish

m

- Length of immersion depends on hole depth (trivial)
- Height of power peak when finishing increases with hole depth for diagonal and helical immersion

Energy Consumption per mm [kWh / mm]

- Calculation of energy consumption (for immersion + finishing) via integration of channel
 'POWER_5_SP1_W' & divide by 360 → kWh.
- Normalized with hole depth
- Disproportional trend of kWh/mm
 with hole depth

Find Optimal Strategy w.r.t. Energy Consumption

Relative Energy Consumption [%]

- Calculation of energy consumption (for immersion + finishing) via integration of channel
 'POWER_5_SP1_W' & divide by 360
 → kWh.
- Normalized with best strategy per hole depth
- Helical immersion optimal for all hole depths.

Find Optimal Strategy w.r.t. Machining Time

Relative Machining Time [%]

- Normalized with best strategy per hole depth
- Helical immersion optimal for 6, 9
 and 12 mm hole depth
- Vertical immersion optimal for 3 mm hole depth

Find Optimal Strategy w.r.t. Maximum Power

Relative Maximum Spindle Power [%]

- Normalized with best strategy per hole depth
- Helical immersion optimal for 3 and 9 mm hole depth
- Diagonal immersion optimal for 6 mm hole depth
- Vertical immersion optimal for 12 mm hole depth
- → Optimal strategy varies, Vertical Immersion recommended for deeper holes

Overview

	End Milling	Plunge Milling	Slot milling	Face Milling
Varied Parameters	Radial Depth a_e Axial Depth a_p	Plunging Strategy	Radial Depth a_e Axial Depth a_p Corner Velocity v_{EP}	Feed Rate v _f Cutting Speed v _c
Number of Experiments (Runs)	10	12	20	48
Tool	End mill (d = 10 mm)	End mill (d = 10 mm)	End mill (d = 10 mm)	Indexable Cutter (d = 80 mm)
Material		1.2083 (X42Cr 13)	Stainless Mold Steel	

• **Questions:** Does corner velocity influence positional accuracy in slot milling? What parameters lead to lowest energy consumption?

Parameter Overview

Run		a _p in mm	VEP	v_{EP} in mm/min		a _e in mm
1	a _{p1}	1	V _{EP1}	80,21	ae₁	1
2	a _{p2}	2	V _{EP1}	80,21	ae₁	1
3	a _{p3}	3	V _{EP1}	80,21	ae₁	1
4	a _{p4}	4	V _{EP1}	80,21	ae₁	1
5	a _{p1}	1	V _{EP2}	187,17	ae ₁	1
6	a _{p2}	2	V _{EP2}	187,17	ae₁	1
7	a _{p3}	3	V _{EP2}	187,17	ae₁	1
8	a _{p4}	4	V _{EP2}	187,17	ae ₁	1
9	a _{p4}	4	V _{EP1}	80,21	ae2	2
10	a _{p4}	4	V _{EP1}	80,21	ae ₃	3
11	a _{p4}	4	V _{EP1}	80,21	ae4	4
12	a _{p4}	4	V _{EP1}	80,21	ae ₅	5
13	a _{p4}	4	V _{EP1}	80,21	ae ₆	6
14	a _{p4}	4	V _{EP1}	80,21	ae7	7
15	a _{p4}	4	V _{EP2}	187,17	ae2	2
16	a _{p4}	4	V _{EP2}	187,17	ae ₃	3
17	a _{p4}	4	V _{EP2}	187,17	ae4	4
18	a _{p4}	4	V _{EP2}	187,17	ae ₅	5
19	a _{p4}	4	V _{EP2}	187,17	ae ₆	6
20	a _{p4}	4	VEP2	187,17	ae7	7

- 20 milling runs overall
- Slot milling consisting of
 - Immersion
 - Synchronous milling (Counterclockwise)
- Two different corner velocities (v_{EP}) are tried:
 - Run 1 4: v_{EP1} with varying a_p and constant a_e
 - Run 5 8: v_{EP2} with varying a_p and constant a_e
 - Run 9 -14: v_{EP1} with constant a_p and varying a_e
 - Run 15 20: v_{EP2} with constant a_p and varying a_e

Goal of analysis:

Effect of varying a_e , a_p and v_{EP} on positional accuracy and energy consumption

- Sketch shows tool path while performing one-sided extension of slot
- Curve radius of 6 mm with $d_{Tool} = 10 \text{ mm} \rightarrow \text{simplification makes underlying phenomena easier to understand}$

• For runs 1 - 4 and 5 - 8 the a_p -variation has an effect on Z-position

For runs 9 – 14 and 15 – 20 the a_e-variation has an effect on the breadth of the milling path.

Slot Milling - Introduction

3D Milling Path for all 20 Runs & Position on Workpiece

Workpiece Frontside:

m

• After run 14, the workpiece was turned over to mill runs 15 - 20.

Runs 1 – 8 (Varying a_p , $v_{EP1} \& v_{EP2}$): Actual vs. Desired Position

 Plot shows actual vs desired XY – position for runs R1 – R8.

- Deviation at first corner C1 for experiments with high v_{EP} and for one experiment with low v_{EP} and a_p = 4 mm.
- Zoomed view on following slide!

Runs 1 – 8 (Varying a_p , $v_{EP1} \& v_{EP2}$): Actual vs. Desired Position (Zoomed)

Plot shows actual vs desired
 XY – position for runs R1 – R8
 zoomed for first corner C1.

- Deviation at first corner C1 for experiments with high v_{EP} and for one experiment with low v_{EP} and a_p = 4 mm.
- Deviation of ~ 0.005 mm (5 µm) → relevant for surface quality.

Runs 1 – 8 (Varying a_p , $v_{EP1} \& v_{EP2}$): Actual vs. Desired Position (Zoomed & Rescaled)

 Plot shows actual vs desired XY - position for runs R1 - R8zoomed for first corner C1.

- Deviation at first corner C1 for experiments with high v_{EP} and for one experiment with low V_{FP} and *a*_{*p*} = 4 mm.
- Deviation of ~ 0.005 mm (5 μ m) \rightarrow relevant for surface quality.

Runs 1 – 8 (Varying a_p , v_{EP1} & v_{EP2}): Actual vs. Desired Position (Zoomed)

Plot shows actual vs desired
 XY – position for runs R1 – R8
 zoomed for second corner C2.

- Deviation at second corner C2 for all experiments.
- Deviation of ~ 0.001 mm (1 μm).

FairMillData2 - Graz, 25.6.2024

Runs 1 – 8 (Varying a_p , v_{EP1} & v_{EP2}): Control Difference in Y-direction

- Increased value in control difference in Y-direction is indicator of anomaly in first turn
- Threshold value of 0.006 mm could be used for detection.

Runs 9 – 20 (Varying a_e , v_{EP1} & v_{EP2}): Actual vs. Desired Position

Runs 9 – 20 (Varying a_e , v_{EP1} & v_{EP2}): Actual vs. Desired Position (Zoomed)

FairMillData2 - Graz, 25.6.2024

Runs 9 – 20 (Varying a_e , $v_{EP1} \& v_{EP2}$): Actual vs. Desired Position (Zoomed & Rescaled)

Runs 9 – 20 (Varying a_e , v_{EP1} & v_{EP2}): Actual vs. Desired Position (Zoomed)

FairMillData2 - Graz, 25.6.2024

Runs 9 – 20 (Varying a_e , $v_{EP1} \& v_{EP2}$): Control Difference in Y-direction

- Increased value in control difference in Y-direction is indicator of anomaly in first turn.
- Threshold value of 0.006 mm could be used for detection.

Runs 9 – 14 (Varying a_e , v_{EP1}): Actual vs. Desired Position for Center of Slot

Runs 9 – 20 (Varying a_e , $v_{EP1} \& v_{EP2}$): Control Difference in Y-direction

• Increased value in control difference in Y-direction is indicator of asymmetric milling path

Slot Milling – Energy Consumption

Energy consumption for all runs

- Energy consumption is calculated through integration of spindle power channel and divide by 360 → kWh
- Energy consumption increases with a_p and a_e (except assymetric path)
- Higher v_{EP} (run 5-8, 15-20) leads to lower energy consumption due to shorter processing time → lowest for run 6.

Box Plot Explanation

- Q1: lowest 25% of data are below this point
- Q3: lowest 75% of data are below this point
- Whisker: last point within 1.5 * IQR
- Outliers: Data points outside of 1.5 * IQR

Box Plot for all runs (zoomed)

- IQR and distance between whiskers increase with $a_{\rm p},$ but not with $a_{\rm e}$
- Median increases with both a_p and a_e

Box plots for spindle power for all runs

Box plot for all runs **Run 20** Boxplot of Energy Data for 20 Experiments e $a_p = 4 \text{ mm}, a_e = 7 \text{ mm},$ 15000 $v_{ep} = 187.17 \text{ mm/min}$ 10000 15000 10000 Spindle Power [W] 5000 ≥ 0000 SP1 5000 4 ∔ ≞ ∔ ∔ ₽ ∔ ∔ ∔ ∔ ≞ 4 ∔ ÷ ₽ <u>.</u> 0 íΩ) POWER 0 8 -5000 -5000Φ Ó. -10000-10000Ó 8 10 15 0 5 Time [s] Run_16 Run_19 Run_1 Run_2 Run_3 Run_4 Run_5 Run_6 Run_8 Run_9 Run_10 Run_11 Run_12 Run_13 Run_14 Run_15 Run_17 Run_18 Run_20 Run_7 Experiments

- Box-plot without zoom shows heavy outliers for run 20.
- Plotting spindle power data for run 20 shows very high/low values.

Overview

	End Milling	Plunge Milling	Slot milling	Face Milling
Varied Parameters	Radial Depth a_e Axial Depth a_p	Plunging Strategy	Radial Depth a_e Axial Depth a_p Corner Velocity v_{EP}	Feed Rate v _f Cutting Speed v_c
Number of Experiments (Runs)	10	12	20	48
Tool	End mill (d = 10 mm)	End mill (d = 10 mm)	End mill (d = 10 mm)	Indexable Cutter (d = 80 mm)
Material		1.2083 (X42Cr 13)	Stainless Mold Steel	

• **Question:** How do feed rate and cutting speed influence energy consumption?

Experiment Design

	Cutting Speed	Spindle Speed	Feed	Feed per Tooth	Feed Rate
Run Index	v _c [m/min]	n [1/min]	f [mm]	f _z [mm]	v _f [mm/min]
1-8	80,00	318,31	0,80 - 2,48	0,10 – 0,31	254,65 – 789,41
9-16	100,00	397,89	0,80 - 2,48	0,10 – 0,31	318,31 – 986,76
17-24	120,00	477,76	0,80 - 2,48	0,10 – 0,31	381,97 – 1184,11
25-32	80,00 – 108,00	318,31 – 429,72	0,80	0,10	254,65 - 343,77
33-40	80,00 – 108,00	318,31 – 429,72	2,00	0,25	636,62 - 859,44
41-48	80,00 - 108,00	318,31 – 429,72	2,96	0,37	942,20 - 1271,97

n_{Inserts} = 8 d_{Tool} = 80 mm

- For runs 1-24, feed parameters are varied with constant cutting speed
- For runs 25 48, speed parameters are varied with constant feed

Face Milling - Introduction

Visualization of Milling Path – Tool Center Point

Total Power for Runs 1 to 8 ($v_c = 80 \text{ m/min}$, $f_z = 0.10 - 0.31 \text{ mm}$) – Stable Cutting Phase

m

• Segmentation of stable cutting phase for further analysis.

Box Plots for Total Power for Runs 1 to 24

- Higher power levels with increasing v_c .
- Median, maximum and minimum increase with f_z
- Width of box and distance between whiskers increases with $f_z \rightarrow$ increased standard deviation.

Face Milling – Power Consumption

Box Plots for Total Power for Runs 24 to 48

- Higher power levels with increasing f_z.
- Median, maximum and minimum increase with v_c.
- Width of box and distance between whiskers increases with $v_c \rightarrow$ increased standard deviation.

f_z has more significant impact compared to v_c

Runs 1 – 8: Density Plot of X,Z-position

Runs 1 to 8 - Position Density (vc = 80 m/min)

- Scattering of X- and Z-position increases with f_z.
- Increased scattering for Run 3 ($a_p = 2 \text{ mm}$) and Run 7.

0.00100 0.00075

0.00050

0.00025

0.00000

-0.00025

-0.00050

-0.00075

-0.00100

0.00100

0.00075

0.00050

0.00025

0.00000

-0.00025

-0.00050

-0.00075

-0.00100

X-Position [mm]

Z-Position [mm]

Z-Position [mm]

Runs 9 – 16: Density Plot of X,Z-position

-0.002-0.001 0.000 0.001 0.002

X-Position [mm]

X-Position [mm]

Scattering of X- and Z-position increases with f_z.

-0.002-0.001 0.000 0.001 0.002

X-Position [mm]

Runs 17 – 24: Density Plot of X,Z-position

Runs 17 to 24 - Position Density (vc = 120 m/min)

• Highest position scatter for highest $f_z = 0.28$ and 0.31 mm.

Runs 17 – 24: Visualization of Z-position to Explain Density Plots

Runs 17 to 24 - Z-Position (vc = 120 mm)

• Explanation for increased scattering in density plots: abrupt changes in Z-position happen in stable cutting phase.

Runs 25 – 32: Density Plot of X,Z-position

Runs 25 to 32 - Position Density (fz = 0.1 mm)

Position scatter does not increase with v_c.

Runs 33 – 40: Density Plot of X,Z-position

Runs 33 to 40 - Position Density (fz = 0.25 mm)

Position scatter does not increase with v_c.

Runs 41 – 48: Density Plot of X,Z-position

Runs 41 to 48 - Position Density (fz = 0.37 mm)

Position scatter does not increase with v_c.

Agenda

- Introduction
- Results of Data Analysis
 - End Milling
 - Plunge Milling
 - Slot Milling
 - Face Milling
- Summary & Outlook

FairMillData2 Data Analysis

Summary of Results

	End Milling	Plunge Milling	Slot Milling	Face Milling
Key Findings				
	 Increasing <i>a_e</i> to achieve given MRR minimizes energy consumption. Increasing <i>a_p</i> to achieve given MRR minimizes maximum power. 	 Helical immersion minimizes energy consumption for all hole depths. No clear recommendation w.r.t maximum power. 	 Increased positional inaccuracies at first slot corner for several runs. No clear dependency on specific parameter. 	 Median and IQR of power channels increase with f_z more significantly than with v_c.
Additional Insights	 Increased IQR caused by increased noise in power channels for runs with increased a_e. Difference in noise for runs with identical parameters. 	 Maximum power for finishing increases with hole depth for diagonal and helical immersion. 	 Run 20 shows asymmetric milling path also in desired position channels (CAM?) IQR increases with a_p, but not with a_e. 	 Scatter in X & Z-position increase with <i>f_z</i> but not with <i>v_c</i>.

- Offering: Manufacturing data acquisition and analysis as a service
- What is your problem to be explored?

Franz Haas franz.haas@tugraz.at

We innovate Materials

Elias Hagendorfer

eliasjan.hagendorfer@mcl.at

+43 3842 45922 - 520

Thomas Klünsner thomas.kluensner@mcl.at +43 3842 45922 - 33

Manfred Mücke

<u>manfred.mücke@mcl.at</u> +43 3842 45922 - 0

Vielen Dank für Ihre Aufmerksamkeit

Materials Center Leoben Forschung GmbH Roseggerstraße 12, 8700 Leoben, AUSTRIA