

Grundlagen der Künstlichen Intelligenz(KI) und des KI-Projektmanagements

Erich Teppan





# Ziel der Lehrveranstaltung

- Zwei Kernfragen bzgl. Anwendung von KI in der Wirtschaft:
  - 1. Welche unternehmerischen Aufgaben können grundsätzlich auf Basis der aktuell zur Verfügung stehenden KI-Technologien gelöst zu werden?
  - 2. Wie schwierig (d.h. wie kostenintensiv und wie risikobehaftet) ist die Lösung dieser Aufgaben mit KI?
- Um diese Fragen zu beantworten braucht man Wissen über:
  - 1. Betriebliche Prozesse, Personal und Kostenstrukturen
    - Kann nicht über eine Lehrveranstaltung vermittelt werden!
  - 2. Methoden der KI und welche Probleme mit welcher Methode gelöst werden können
    - Fallbeispiele ohne Kenntnis über die Methode können nicht generalisiert bzw. In weitere Anwendungsfälle übergeleitet warden
  - 3. Entmystifizierung von Kl
    - KI als Black-Box führt zu
      - starker Überschätzung der Möglichkeiten von KI oder
      - Ablehnung

# Inhalt

### 1. Tag (Vormittag):

- Was ist "Künstliche Intelligenz (KI)"?
  - Geschichte
  - Ziele
  - Überblick über Methoden und Fragestellungen

### 1. Tag (Nachmittag):

- Modellieren und Lösen
  - Zustandsbasierte Suche
  - Logik und Constraints

#### 2. Tag (Vormittag):

- Maschinelles Lernen
  - Warenkorbanalyse
  - Clustering

### 2. Tag (Nachmittag):

- KI-Projektmanagement
  - KI Fragestellungen erkennen und beurteilen
  - Umsetzung Vorbereiten / Rahmenbedingungen
  - Risikomanagement

# Was ist "Künstliche Intelligenz"?

- Es gibt keine allgemeingültige Definition
  - Der Begriff der Intelligenz ist auch in der Psychologie nicht wirklich definiert
- Allgemeines Begriffsverständnis, welches sich verändert bzw. Erweitert
- Elementar für das Begriffsverständnis sind die Ziele
  - Ziele von KI haben änder(te)n sich über die Zeit
  - Geschichtliche Betrachtung hilfreich, um die Ziele zu verstehen
- In Abhängigkeit von den Zielen können relevante Probleme / Fragestellungen identifiziert werden
- In Abhängigkeit von den Problemen können Methoden identifiziert bzw. entwickelt werden

### Eine kürzere Geschichte der Kl

### • 1940er:

- Kybernetik (N. Wiener)
- Konnektionismus / Neuronale Netze (W. S. McCulloch, W. Pitts)
- Transistor (J. R. Pierce)

#### • 1950er:

- Neuronale Netze (M. Minsky, F. Rosenblatt)
- Begriff "Artificial Intelligence" (J. McCarthy)
  - Ziel: "starke" KI
- XOR Problem führt zu erstem KI Winter

### • 1970er:

- Ziel: "schwache" KI
- Expertensysteme
  - Logik, Regel-basiert

### • 1980er:

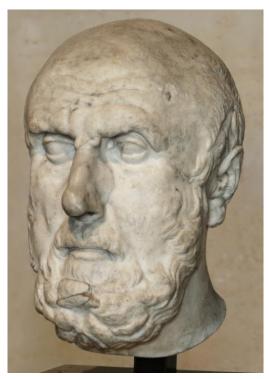
- Renaissance von Neuronalen Netzen und maschinellen Lernmethoden
- Kleinere Erfolge, z.B. Hopfield Netze für Travelling Salesman Problem

### • 1990er:

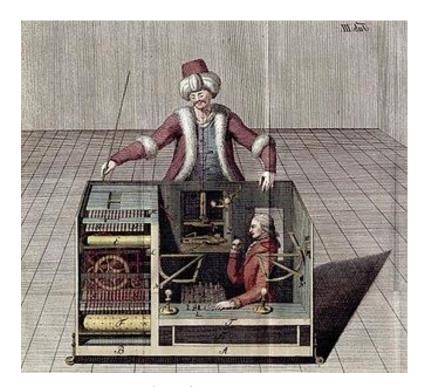
- Deep Blue
- Wissensbasierte Systeme

#### • 2000er:

- High Performance Computing
- Monte Carlo Tree Search
- Deep Learning


#### • 2010er:

- Deep Learning
- Alpha Go (DeepMind)


### • 2020er:

- Large Language Models (LLMs)
- ChatGPT

# Eine längere Geschichte der Kl



- Antike
  - hypothetischer Syllogismus (Chrysippos von Soloi, ca. 300 v.CHr.)
  - Lehre des Schlussfolgerns
  - Aussagenlogik



- Schachtürke (Kupferstich von Racknitz, 1789)
  - Der Wunsch denkende Maschinen zu bauen ist alt

# Ziele von KI

### • starke KI:

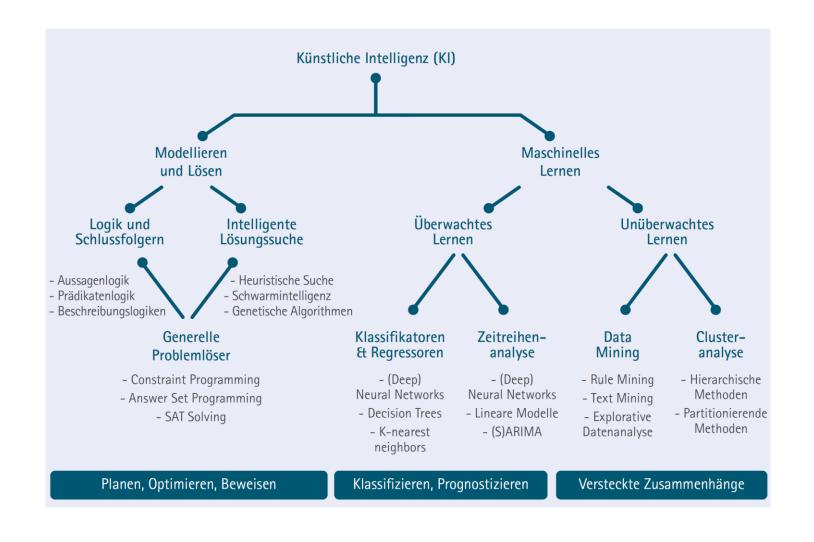
- Generelle Intelligenz
- Problem-unabhängig
- Ursprüngliche Vision
- Denkende Maschinen ähnlich dem Menschen

### • Schwache KI:

 Systeme/Algorithmen für spezielle Probleme, deren Lösung nach allgemeiner Ansicht höhere kognitive Fähigkeiten erfordert

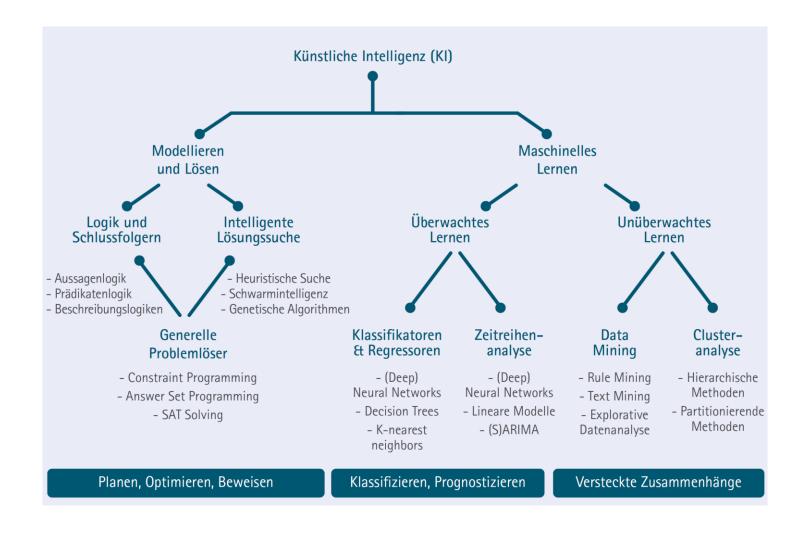


# Ziele von KI


 Artificial Intelligence – A modern approach, Stuart Russel und Peter Norvig:

|           | menschlich                | rational                |
|-----------|---------------------------|-------------------------|
| Denken    | Menschliches<br>Denken    | Rationales<br>Denken    |
| Verhalten | Menschliches<br>Verhalten | Rationales<br>Verhalten |

- Was heißt ,menschlich'?
  - Ist ,menschlich' überhaupt gut?
  - Rationalität ist ein Konzept, welches in vielen Bereichen formal klar definierbar ist
    - Z.B. Entscheidungstheorie, Spieltheorie
- Was ist ,Denken'?
  - Wie misst man einen Gedanken?
  - Verhalten kann man beobachten, also messen
    - Z.B. die getroffene(n) Entscheidung(en)
- Menschliches Denken -> starke KI
- Rationales Verhalten -> schwache KI


## Methoden und Fragestellungen: Überblick

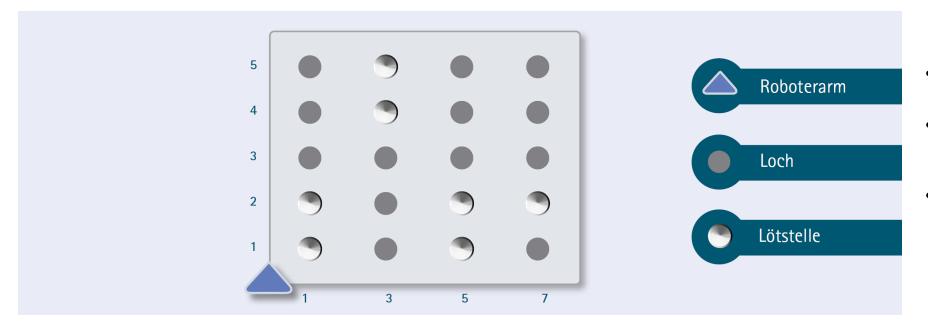
- Klassische KI:
  - Modellieren und Lösen
  - Symbolische KI
  - Modell-basiert
    - Logik
    - Regeln
    - Zustandsräume
    - Etc.
  - "Good, old fashioned AI"
  - Dominiert bis in die 90er
  - Expertensysteme
  - Knowledge Representation and Reasoning



## Methoden und Fragestellungen: Überblick

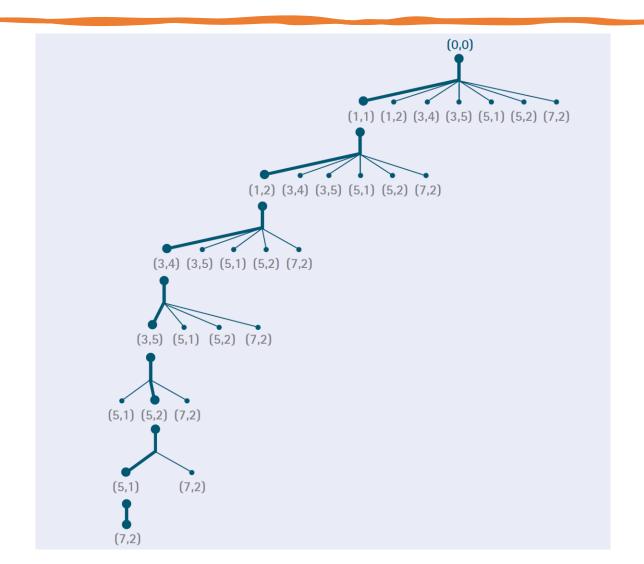
- Überwachtes Maschinelles Lernen:
  - Trainingsdatensatz
  - Regression / Klassifikation
  - Function Fitting
  - Finde die richtigen Modellparameter
  - Derzeit dominieren subsymbolische Ansätze
    - Deep Learning
- Unüberwachtes Maschinelles Lernen
  - Finde Versteckte Zusammenhänge
  - Datensatz ist nicht zum Training, sondern selbst das Analyseobjekt
- Reinforcement Learning
- Self-Supervised Machine Learning



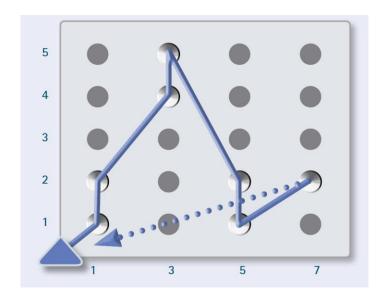

### Modellieren und Lösen

- Zentrale Komponente: Beschreibung eines Teiles der Welt, z.B.
  - Verkehrsnetz
  - Schachregeln
  - Spielzustände
- Modell, Spezifikation oder Wissensbasis
  - Verschiedene Disziplinen der klassischen KI unterscheiden sich in der Sprache, welche zum Modellieren verwendet wird, z.B.
    - Aussagenlogik -> SAT Solving
    - Prädikatenlogik -> Logische Programmierung (Answer Set Programs, Prolog)
    - Zustandsräume -> Zustandsbasierte Suche, Heuristische Suche, Lokale Suche

## Modellieren und Lösen: Beispiel

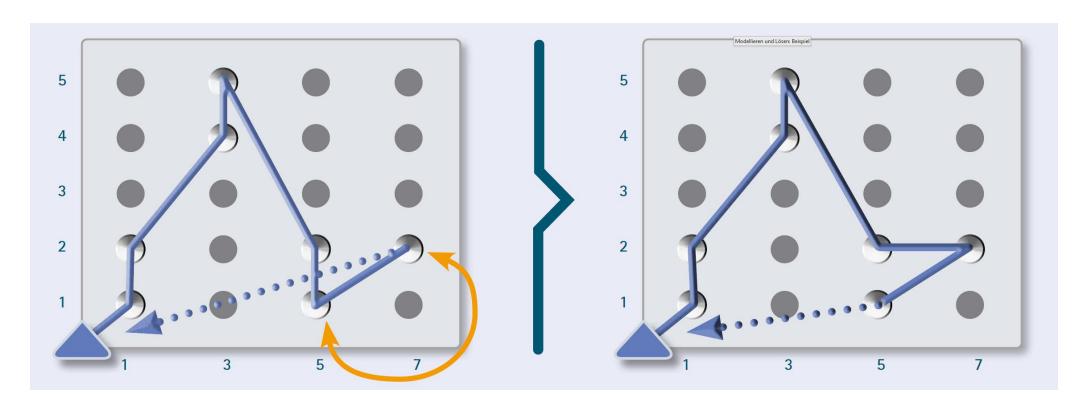

### • Wegeoptimierung bei Lötrobotern

- automatisiert Lötstellen auf einer Lochrasterplatine herstellen
- Viele Platinen mit dem selben Lötmuster
- Reihenfolge, in welcher die Lötstellen abgearbeitet werden, hat Einfluss darauf, wie schnell eine Platine fertig gelötet ist
- Problem des Handlungsreisenden, Rundreiseproblem
- Ziel: kostenoptimale (Zeit) Rundreise: jeder Punkt genau einmal, zum Schluss zurück zum Ausgangspunkt




- Stellung [0,0] zum Tausch der Platine
- Horizontale Abstände doppelt so groß wie vertikale
- Horizontale und vertikale Bewegung gleichzeitig

# Modellieren und Lösen: Beispiel




- Aufbau eines Suchbaums
- Reihenfolge, in welcher Knoten entwickelt werden abhängig von Algorithmus
- Gierige-Besten Suche (Greedy Best First Search)
  - Expandiere zuerst Knoten, welche laut einer Heuristik (Bewertungsfunktion) die besten sind
  - Beispielheuristik: geografisch n\u00e4heste L\u00f6cher zuerst



# Modellieren und Lösen: Beispiel

- Lokale Suche
  - Start mit Lösung
  - Verbessere schrittweise die Lösung



### Überwachtes Maschinelles Lernen

- Lerne Funktion / Funktionsparameter
- Lerne wie Input mit Output zusammenhängt
- Lernen basiert auf Trainingsdaten
- Traingsdaten beinhalten die richtigen Antworten

nicht-diskrete Antwort->Regression

diskrete Antwort->Klassification

| ID  | Feature 1           | Feature 2           | <br>Feature n           | Antwort       |
|-----|---------------------|---------------------|-------------------------|---------------|
| a   | Wert <sub>a,1</sub> | Wert <sub>a,2</sub> | <br>Wert <sub>a,n</sub> | Antwort für a |
| b   | Wert <sub>b,1</sub> | Wert <sub>b,2</sub> | <br>Wert <sub>b,n</sub> | Antwort für b |
| ••• |                     |                     | <br>                    |               |
| m   | Wert <sub>m,1</sub> | Wert <sub>m,2</sub> | <br>Wert <sub>m,n</sub> | Antwort für c |

# Klassifikation: Beispiel

### • Spam Erkennung

|          | "Black Jack" | "Casino" | "Gewinn" | "Bargeld" | "Cash" | "Kostenlos" | Spam |
|----------|--------------|----------|----------|-----------|--------|-------------|------|
| E-Mail 1 | Ja           | Ja       | Ja       | Nein      | Ja     | Nein        | Ja   |
| E-Mail 2 | Ja           | Ja       | Nein     | Ja        | Nein   | Nein        | Ja   |
| E-Mail 3 | Nein         | Ja       | Ja       | Ja Ja     |        | Nein        | Ja   |
| E-Mail 4 | Nein         | Nein     | Ja       | Ja        | Ja     | Nein        | Ja   |
| E-Mail 5 | Nein         | Nein     | Nein     | Nein      | Nein   | Nein        | Nein |
| E-Mail 6 | Nein         | Nein     | Nein     | Nein      | Nein   | Ja          | Nein |
| E-Mail 7 | Nein         | Nein     | Nein     | Nein      | Ja     | Nein        | Nein |
| E-Mail 8 | Nein         | Nein     | Nein     | Ja        | Nein   | Nein        | Nein |

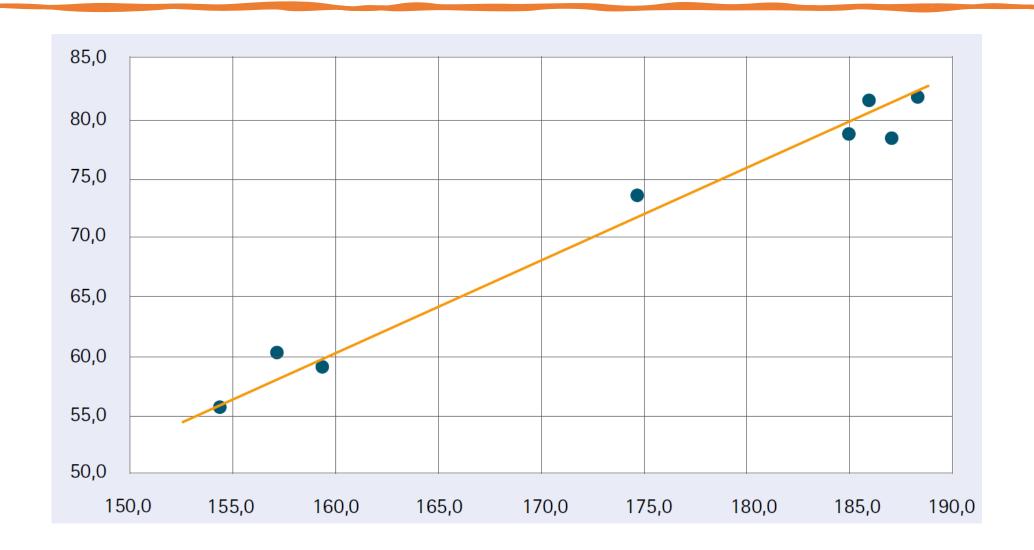
# Klassifikation: Beispiel

- Spam Erkennung
- K-nearest neighbors Methode

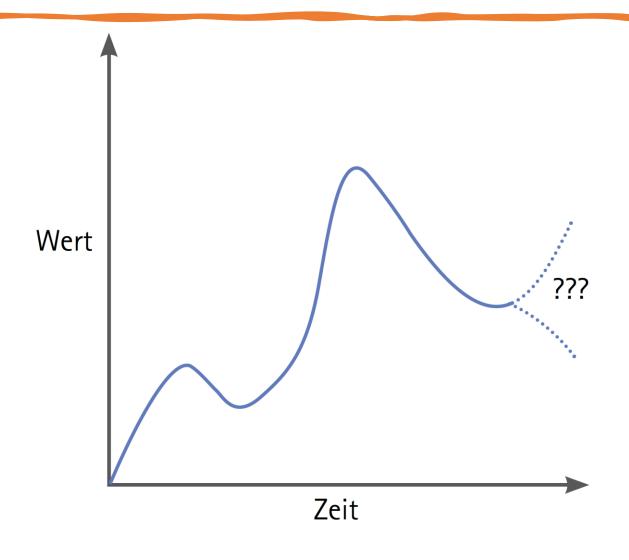
|                | "Black Jack" | "Casino" | "Gewinn" | "Bargeld" | "Cash" | "Kostenlos" | Spam          | Gleiche Merkmale mit<br>der neuen E-Mail |
|----------------|--------------|----------|----------|-----------|--------|-------------|---------------|------------------------------------------|
| E-Mail 1       | Ja           | Ja       | Ja       | Nein      | Ja     | Nein        | Ja            | 4                                        |
| E-Mail 2       | Ja           | Ja       | Ja       | Ja        | Nein   | Nein        | Ja            | 4                                        |
| E-Mail 3       | Nein         | Ja       | Ja       | Ja        | Nein   | Nein        | Ja            | 3                                        |
| E-Mail 4       | Nein         | Nein     | Ja       | Ja        | Ja     | Nein        | Ja            | 5                                        |
| E-Mail 5       | Nein         | Nein     | Nein     | Nein      | Nein   | Nein        | Nein          | 2                                        |
| E-Mail 6       | Nein         | Nein     | Nein     | Nein      | Nein   | Ja          | Nein          | 1                                        |
| E-Mail 7       | Nein         | Nein     | Nein     | Nein      | Ja     | Nein        | Nein          | 3                                        |
| E-Mail 8       | Nein         | Nein     | Nein     | Ja        | Nein   | Nein        | Nein          | 3                                        |
|                |              |          |          |           |        |             |               |                                          |
| neue<br>E-Mail | Ja           | Nein     | Ja       | Ja        | Ja     | Nein        | ??? <b>Ja</b> |                                          |

# Klassifikation: Beispiel 2

• Bilderkennung / Ziffernerkennung


| Bį | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Е      | <sub>i</sub> | 1   | 2  |    | 3  | 4 | 5   |    | 6  | 7 | 8     |
|----|---|---|---|---|---|---|---|---|--------|--------------|-----|----|----|----|---|-----|----|----|---|-------|
| 1  |   |   |   |   |   |   |   |   |        | 1            | 0   | 0  |    | 1  | 1 | 1   |    | 1  | 0 | 0     |
| 2  |   |   |   |   |   |   |   |   |        | 2            | 0   | 0  |    | 1  | 0 | 0   |    | 0  | 0 | 0     |
| 3  |   |   |   |   |   |   |   |   |        | 3            | 0   | 0  |    | 1  | 0 | 0   |    | 0  | 0 | 0     |
| 4  |   |   |   |   |   |   |   |   |        | 4            | 0   | 0  |    | 1  | 1 | 1   |    | 1  | 0 | 0     |
| 5  |   |   |   |   |   |   |   |   |        | 5            | 0   | 0  |    | 1  | 0 | 0   |    | 1  | 0 | 0     |
| 6  |   |   |   |   |   |   |   |   |        | 6            | 0   | 0  |    | 1  | 0 | 0   |    | 1  | 0 | 0     |
| 7  |   |   |   |   |   |   |   |   |        | 7            | 0   | 0  |    | 1  | 1 | 1   |    | 1  | 0 | 0     |
| 8  |   |   |   |   |   |   |   |   |        | 8            | 0   | 0  |    | 0  | 0 | 0   |    | 0  | 0 | 0     |
|    |   |   |   |   |   |   |   |   |        |              |     |    |    |    |   |     |    |    |   |       |
|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | <br>57 | 5            | 8 [ | 59 | 60 | 61 | 6 | 2 ( | 63 | 64 | Z | iffer |
|    |   |   |   |   |   |   |   |   | <br>   |              |     |    |    |    |   |     |    |    |   |       |
| Bį | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | <br>0  | C            | )   | 0  | 0  | 0  | C | )   | 0  | 0  |   | 6     |
|    |   |   |   |   |   |   |   |   | <br>   |              |     |    |    |    |   |     |    |    |   |       |

# Regression: Beispiel


|          | Größe (cm) | Gewicht (kg) |
|----------|------------|--------------|
| Person 1 | 188,4      | 81,8         |
| Person 2 | 187,0      | 78,6         |
| Person 3 | 157,1      | 60,2         |
| Person 4 | 174,6      | 73,6         |
| Person 5 | 159,3      | 59,2         |
| Person 6 | 185,9      | 81,6         |
| Person 7 | 154,3      | 55,8         |
| Person 8 | 185,0      | 78,8         |

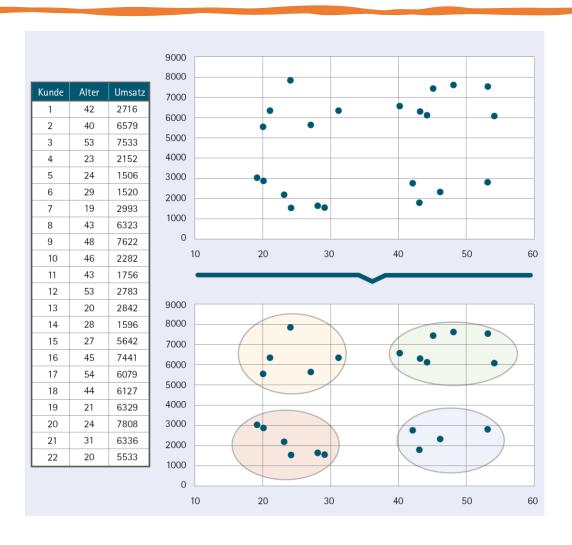
- 3-nearest neighbors Methode
  - Durchschnitt statt Majorität
- Was ist das geschätzte Gewicht einer Person mit Größe 180cm?
  - Personen 4, 6, 8 am ähnlichsten
  - (73,6+81,6+78,8)/3=78

# (Lineare) Regression: Beispiel



# Zeitreihenanalyse: Autoregression




- Features sind die Werte der Vergangenheit
- Traningsdatensatz kann leicht generiert werden
  - Jeder Datenpunkt ist eine Antwort
  - Vorangegangene Datenpunkte sind Features

### Unüberwachtes Maschinelles Lernen

- Datensatz hat keine Antworten
- Datensatz wird nicht zum Training verwendet
- Datensatz ist selbst ist, was zu analysieren ist und wo neue Informationen (versteckte Zusammenhänge) gesucht werden
  - Zusammenhänge zwischen Spalten
    - Z.B. Principal Component Analysis
  - Zusammenhänge zwischen Reihen
    - Z.B. Clusteranalyse
  - Zusammenhänge zwischen Reihen und Spalten
    - Z.B. Rule Mining

| ID  | Feature 1           | Feature 2           | <br>Feature n           |
|-----|---------------------|---------------------|-------------------------|
| a   | Wert <sub>a,1</sub> | Wert <sub>a,2</sub> | <br>Wert <sub>a,n</sub> |
| b   | Wert <sub>b,1</sub> | Wert <sub>b,2</sub> | <br>Wert <sub>b,n</sub> |
| ••• |                     | •••                 | <br>                    |
| m   | Wert <sub>m,1</sub> | Wert <sub>m,2</sub> | <br>Wert <sub>m,n</sub> |

# Clusteranalyse: Beispiel



- Was gehört zusammen?
- Cluster sollen möglichst ähnliche Objekte beinhalten
- Verschiedene Cluster sollen maximal unterschiedlich sein

# Rule Mining: Beispiel

| Warenkorb | Produkt 1 | Produkt 2 | Produkt 3 | Produkt 4 | rodukt 4 Produkt 5 |   | Produkt 7 |
|-----------|-----------|-----------|-----------|-----------|--------------------|---|-----------|
| 1         | 1         | 0         | 0         | 1         | 0                  | 1 | 0         |
| 2         | 1         | 1         | 1         | 0         | 0                  | 0 | 0         |
| 3         | 0         | 0         | 1         | 1         | 1                  | 0 | 0         |
| 4         | 1         | 0         | 0         | 1         | 0                  | 1 | 0         |
| 5         | 0         | 1         | 0         | 0         | 1                  | 0 | 1         |
| 6         | 1         | 0         | 0         | 1         | 0                  | 1 | 0         |
| 7         | 1         | 0         | 0         | 0         | 1                  | 0 | 0         |
| 8         | 0         | 1         | 0         | 1         | 0                  | 0 | 0         |
| 9         | 1         | 0         | 1         | 1         | 0                  | 0 | 1         |
| 10        | 0         | 0         | 0         | 0         | 1                  | 1 | 1         |

- Warenkorbanalyse
- Welche Produkte werden oft zusammen gekauft?
- Produkt 1, 4, 6 in 30% der Fälle gemeinsam
- Mögliche Regel: Wenn Produkt 1 und 4 dann Produkt 6
  - Regel wäre in 75% der Anwendungsfälle korrekt

# Ende Teil 1